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Abstract

Aerodynamic shape design has long persisted as a difficult scientific challenge due its

highly nonlinear flow physics and daunting geometric complexity. However, with the

emergence of Computational Fluid Dynamics (CFD) it has become possible to make

accurate predictions of flows which are not dominated by viscous effects. It is thus

worthwhile to explore the extension of CFD methods for flow analysis to the treatment

of aerodynamic shape design.

Two new aerodynamic shape design methods are developed which combine existing

CFD technology, optimal control theory, and numerical optimization techniques. Flow

analysis methods for the potential flow equation and the Euler equations form the

basis of the two respective design methods. In each case, optimal control theory

is used to derive the adjoint differential equations, the solution of which provides

the necessary gradient information to a numerical optimization method much more

efficiently then by conventional finite differencing. Each technique uses a quasi-

Newton numerical optimization algorithm to drive an aerodynamic objective function

toward a minimum. An analytic grid perturbation method is developed to modify body

fitted meshes to accommodate shape changes during the design process. Both Hicks-

Henne perturbation functions and B-spline control points are explored as suitable

design variables. The new methods prove to be computationally efficient and robust,

and can be used for practical airfoil design including geometric and aerodynamic

constraints. Objective functions are chosen to allow both inverse design to a target

pressure distribution and wave drag minimization. Several design cases are presented

for each method illustrating its practicality and efficiency. These include non-lifting

and lifting airfoils operating at both subsonic and transonic conditions.
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Chapter I

INTRODUCTION

Even before the success of the first powered flight at the turn of the 20th century,

the importance of aerodynamic design was realized, leading to the introduction of

wind tunnels in 1884. Since that time aerodynamicists have sought to develop better

tools to facilitate the aerodynamic design process. The recent advances in computer

technology have opened up the possibility for developing new methods to treat the

problem of aerodynamic shape design. However, even with today's computer systems,

detailed aerodynamic design has proven to necessitate a balance between the need for

an accurate representation of the physical phenomena and limitations in the available

computational resources.

1.1 PROBLEM STATEMENT

The goal of all aerodynamic design methods, be they experimental, analytical, or

computational, is to find a shape which improves an aerodynamic measure of merit

while adhering to appropriate constraints. The particular goal of this research is

the development of accurate, efficient and versatile computational tools capable of

automated design of aerodynamic shapes subject to both geometric and aerodynamic

constraints. The two-dimensional design of airfoil sections has been selected as a

representative problem to test alternative approaches. This still allows much variation

in the possible methods and their capabilities. These capabilities can be classified by

the level of flow physics that is used in the design process:

1. Viscous Methods
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• Compressible Navier-Stokes equations

• Incompressible Navier-Stokes equations

• Euler + boundary layer equations

• Potential flow + boundary layer equations

• Small disturbance equation + boundary layer equations

• Linear potential flow equation + boundary layer equations

2. Inviscid Methods

• Euler equations

• Potential flow equation

• Small disturbance equation

• Linear potential flow equation

3. Source and Vortex Element Methods

• Panel methods

• Thin-airfoil theory

1.1.1 GROUP1

The first group of analysis methods are all capable of treating some degree of viscous

phenomena. For the design of airfoil sections subject to strictly subsonic flow, the

ability to treat viscous effects becomes important since they dominate the production

of drag seen as skin friction and pressure losses. Further, if it is desired to design

airfoils for high lift, again the viscous effects must be given high consideration due to

their determination of stall behavior.

The choice of which of the governing equations within this group to use for a

viscous flow airfoil analysis or design is determined by a further understanding of the

problem. If the problem consists entirely of low Mach number flow (<.2) then either the

incompressible Navier-Stokes equations or the linear potential flow equation coupled

with a boundary layer analysis can be used. The choice between these two is settled



Chapter 1 Introduction 3

by the degree of coupling between the inviscid and viscous (boundary layer) portions

of the flow. If coupling is pronounced, such as in flows that are dominated by large

separation regions, then the incompressible Navier-Stokes equations should be used.

For flows that exhibit compressibility effects, again either the compressible Navier-

Stokes equations or one of the others remaining in group (1) must be used depending

on the degree of inviscid-viscous coupling. If very strong coupling is not present, the

choice can follow from the discussion to be presented for group (2).

1.1.2 GROUP2

If the problem of interest is transonic cruise design, the main source of concern becomes

wave drag. While the compressible Navier-Stokes equations may be used to analyze

this problem it is often not critical to include viscous effects since they are of secondary

consideration for determining cruise point wave drag. Group (2) above lists a hierarchy

of inviscid methods with decreasing ability to treat compressibility effects. At the

bottom of this list are the linear potential methods which have no such capability.

The small disturbance equation is a nonlinear potential flow equation that corrects for

compressibility effects provided these effects are small. It is usually appropriate for

thin airfoils or bodies where local Mach numbers are only slightly greater than 1. Both

the Euler and the potential flow equations remove these small disturbance restrictions

and allow for arbitrary geometry and Mach numbers. The primary difference between

the two is in their treatment of entropy and vorticity. The potential flow equation does

not admit the production of either vorticity or entropy. Further, it does not allow for the

convection of vorticity. The Euler equations on the other hand, properly allow for the

production of entropy and vorticity along shock boundaries, as well as the convection

of vorticity. These differences between the two have significant implications for when

each system is appropriate and how each system must be formulated.

Independent of the production of vorticity through shock waves, the presence of

vorticity in the flow domain is necessary in the case of two-dimensional airfoils for

the Kutta condition to be enforced at the trailing edge. This problem is addressed

in the potential flow formulation by enforcing a constant circulation in the flow field
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such that the Kutta condition is satisfied. In the case of the Euler equations, which

allow for the convection of vorticity but not its production at the surface, the artificial

viscosity required to obtain a stable solution to the discrete system is often enough to

allow the Kutta condition to be satisfied as a by-product of the pseudo time dependent

iteration process.

The difference in the treatment of entropy between the two may also affect both

the results and the solution process. For viscous flows over an airfoil, the entropy

production is limited to two regions: boundary layers and shock waves. Since both

methods are inviscid, neither can account for the entropy production in the boundary

layer. However, since the Euler equations capture the correct shock jump properties,

they will predict the entropy production through the shocks and consequently the

correct shock strengths. In contrast, the potential flow equation models shock waves

as isentropic compressions and hence deviates from the correct solution as the shock

strength increases. While corrections to this difficulty in the potential flow equation

have been devised by Hafez [33], they are by no means easy to implement within the

framework of design methods. In most potential flow methods the formulation is left

as isentropic. Without this correction these methods can still be used with reasonable

accuracy so long as the local Mach number of the flow around the airfoil does not

exceed about 1.3. For flows with strong shocks where the isentropic assumption fails,

the Euler equations are necessary to obtain accurate inviscid solutions.

The final group of methods (3) bridges the gap between analytical methods and the

first computational methods. They are of historical and academic interest but are no

longer used for transonic airfoil analysis, or design.

1.2 DEVELOPMENTS IN AERODYNAMIC DESIGN

The success of powered flight resulted from the maturation of many required elements,

including aerodynamics. The Wright brothers developed airfoils through the painful

and laborious process of building and testing countless models [114 ]. Their eventual

success caused the subject, referred to as "a dream of madmen" [73], to become a
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worthy scientific endeavor.

In the 1920s, fueled by the value of flight as a weapon of war, wind tunnel ex-

periments as well as flight testing were conducted throughout the globe. In the

United States, NACA--the National Advisory Committee for Aeronautics (precursor

to NASA)--was formed. One of its initial goals was the systematic development of

efficient airfoils through intensive wind tunnel testing.

Theoretical aerodynamics matured in parallel with experimental aerodynamics,

and similarly gained acceptance through the success of powered flight. The first

practical theories in aerodynamics were developed by Ludwig Prandtl and his co-

workers, with their Thin Airfoil and Lifting Line Theories, both developed in the period

1912-1918 [82, 88]. Both of these theories were developed through the insight provided

by the earlier work of Lanchester [73], who first proposed the idea of circulation and

vortex shedding. Thin Airfoil Theory showed what experimenters already knew: airfoil

sections have a lift curve slope close to 2_ per radian. But this theory gave strong

theoretical support to the early vague notions of how lift was generated. It also gave

credibility to the aerodynamicist and placed him on the level of a true scientist and

not a "madman." Lifting Line Theory was even more important. This theory fostered

the development of such concepts as induced drag, wing efficiency, and optimal elliptic

planforms. The aviation world quickly adopted these ideas, as was evidenced by the

highly refined wing planforms of aircraft developed during the Second World War.

As aircraft became more refined, enhancing their aerodynamics grew more complex.

The experimentalists built larger and more capable wind tunnels. With these new

facilities, NACA followed its highly successful four-digit airfoils with first the five-

digit airfoils and eventually the six-series airfoils. These latter airfoils were intended

to take advantage of increased laminar flow to reduce drag. Starting in the 1950s

work began in earnest to understand and develop aircraft capable of routine transonic

and supersonic flight. At NASA Ames Research Center, the Unitary Wind Tunnel

complex was built [84, 85] to provide experimentalists with the capability of studying

aerodynamics over a large range of Mach numbers.

Since about 1960 there has been rapid progress in the field of CFD. Especially
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in the last decade with substantial improvements in both computer performance and

numerical methods, CFD has been used extensively in parallel with experimental

methods to aid in the aerodynamic design process. While much research continues in

the CFD field, accurate and robust solutions for many flow conditions are now routinely

obtained over complete aircraft configurations. Modern aircraft designers hope to

benefit from this capacity in order to refine existing designs at transonic conditions

and develop new designs at supersonic conditions. These highly nonlinear flow regimes

require a design fidelity for which only CFD may provide the answers within practical

time and cost constraints. Thus far, however, CFDmlike wind tunnel testingmhas

not had as much success in direct aerodynamic shape design. Since the inception of

CFD, researchers have sought not only to accurately predict the flow fields about given

configurations, but also to formulate design methods capable of creating new optimum

configurations. Yet while flow analysis can now be carried out over quite complex

configurations using the Navier-Stokes equations with a high degree of confidence,

direct CFD-based design is still limited to very simple two-dimensional and three-

dimensional configurations, usually without including viscous effects. The CFD-based

aerodynamic design methods that do exist can be grouped into three basic categories:

inverse surface methods, inverse field methods, and numerical optimization methods.

A brief review of these methods is presented in the next three sections with special

emphasis on those that are capable of treating transonic and supersonic flows, where

the previously-used analytic and linear methods are inadequate. The review is by no

means complete but it indicates the current state of the science.

1.2.1 INVERSE SURFACE METHODS

Inverse surface methods derive their name from the fact that they invert the goal

of the flow analysis algorithm. Instead of obtaining the surface distribution of an

aerodynamic quantity, such as pressure, for a given shape, they calculate the shape

for a given surface distribution of an aerodynamic quantity.

Lighthill solved the inverse surface pressure specification problem for a two dimen-

sional profile in the presence of incompressible inviscid flow by conformal mapping [77 ].
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The air speed over the profile is given by

q = -_-, (1.1)

where ¢ is the velocity potential for flow past a circle and h is the modulus of the

conformal mapping function between the circle and the profile. Since the solution, ¢,

is known for incompressible inviscid flow over a circle, knowing the analytic mapping

exactly determines the solution over the profile. Conversely, by letting q_ be the

desired surface speed, the value of h can be obtained by setting q = qd in equation

(1.1). Furthermore, the mapping is analytic and is thus uniquely determined by the

value of h on the boundary yielding the desired shape. Lighthilrs method makes it

clear that q may not be chosen entirely arbitrarily, but instead must satisfy constraints

as follows:

_log d8 0 (1.2)qo
7_

'log 8 d8 0 (1.3)qo COS

logqo sinOdO O, (1.4)
7r

where qo is the surface velocity distribution for the zero lift condition. The first con-

straint (1.2) is necessary for q to attain the free stream value qo, in the far field. The

other two constraints (1.3,1.4) must be satisfied in order to produce a profile without a

gap at the trailing edge.

To treat more complicated inverse surface problems, an iteration scheme is usually

needed. For transonic potential flows, two basic iterative inverse surface methods

exist. The first was pioneered by Tranen [110] who replaced the Neumann surface

boundary condition in an existing CFD potential flow analysis code with a Dirichlet

boundary condition obtained by integrating a desired target velocity distribution. The

shape is then updated iteratively by the calculated normal velocity through the sur-

face (transpiration). The approach can incur difficulties because of the difficulty in

constructing a convergent iterative algorithm for the desired shape changes based on

the Dirichlet boundary conditions at the surface. In particular, if the target pressure

distribution is not realizable the iterations cannot converge. Nevertheless, Tranen's
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method has become accepted by the aeronautics community, especially with improve-

ments developed by Volpe and Melnik [112, 113, 111] and through its extension to

three dimensions by Henne [36] using the FLO22 wing analysis code of Jameson and

Caughey |64]. All of these Dirichlet boundary condition methods require between 2-10

inverse design cycles in addition to a final analysis check to determine if the target

has truly been achieved.

The second major technique solving the transonic surface quantity specification

problem was proposed by McFadden and Garabedian, who essentially extended the

method of Lighthill [81]. The iterations in this case are carried out by first solving the

flow equation for a given initial mapping ho. Then an updated mapping is determined

by setting q = q_ in equation (1.1}. Again the flow equation is solved for this new

mapping, hi, and the process is repeated. In the limiting case of zero Mach number,

the method reduces to Lighthill's method. The advantage of the method is that it

does not require a modification to a Dirichlet boundary condition at the surface, and

therefore retains a valid solution during the entire design process. McFadden gives

a proof that the iterations will converge for small Mach numbers. A related method

for three-dimensional design of wings was also devised by Garabedian and McFadden

[24, 25]. In their scheme, the steady potential flow solution is obtained by solving an

artificial time-dependent equation, and the surface is treated as a free boundary. This

surface is shifted according to an auxiliary time dependent equation in such a way

that the flow evolves toward the specified pressure distribution.

Since the development of these two standard transonic potential flow inverse sur-

face methods, many combinations and variations have been developed which will not

be reviewed here. These modified formulations either allow for somewhat greater

geometric complexity, admit greater control over the eventual design, or even use dif-

ferent governing equations such as in the work of Fay {21] where the Euler equations

were treated. Even though some of these methods have been successfully extended to

limited three-dimensional applications, few have made a significant impact on actual

aircraft design.

Another design method based on the Euler equations has been developed by Giles,
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Drela and Thompkins [27}. Their method solves the Euler equations in a stream-

function-as-coordinate system. This implies that the coordinates (i.e., the stream-

lines) represent one of the unknowns in the solution process. The system has been

formulated for two-dimensional transonic flow about an airfoil and uses an implicit

Newton iteration scheme to achieve rapid convergence. The technique can be used

in the analysis mode where the streamline of the surface is fixed. Alternatively, the

method can be used in partial inverse mode, where part of the surface is left free and

the pressure is prescribed as a boundary condition instead. The method has had dra-

matic success in the design of airfoils, especially since Drela and Giles have extended

it to include an elegant coupling to a two-equation integral boundary layer method

I17, 28]. Unfortunately, no clear-cut method exists to extend such a formulation to

three dimensions.

Recently through the work of Campbell [13, 14], a simplified inverse method has

shown much success. In his approach, the difference between the target and actual

pressures is translated into surface changes through the use of the relationship be-

tween surface curvature and pressure for subsonic flow, and surface slope and pressure

for supersonic flow. The iteration proceeds by coupling these relationships to any CFD

algorithm and periodically updating the surface shape. The method is essentially a

simplification of Garabedian and McFadden's original method that replaces surface

updates developed by a mesh transformation with simple fixed relationships. Camp-

bell has extended the method to treat flows subject to the Navier-Stokes equations in

three dimensions with significant success {14]. The method is based on the assumption

that the dependence of the local pressure on the shape satisfies simple fixed relation-

ships. For three dimensions, where the surface curvatures and slopes are calculated

plane by plane in the free stream direction, any cross-flow character in the solution

could disrupt the design process.

1.2.2 INVERSE FIELD METHODS

An alternative means of obtaining desirable aerodynamic shapes is provided by the

field-based class of inverse design methods. These methods differ from surface spec-
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ification methods in that they obtain designs based upon objectives or constraints

imposed not only upon the configuration surface but everywhere in the flow field.

Most of these methods are based on potential flow techniques with only a few having

been extended to three dimensions.

Possibly the most notable example of an reverse field method, which was first

introduced by Garabedian and Korn [26], relies upon a hodograph transformation. The

method can be regarded as an inverse field method since part of the design process

guarantees that no shock will occur in the flow field. However, it also retains the

ability to specify the target Mach number distribution on the geometry surface and

thus must be considered a hybrid method. The technique has been used with striking

success in the development of airfoils displaying shock-free transonic flows |2]. The

technique is quite difficult and involves using a method of complex characteristics to

solve the equations in the hodograph plane. Its most limiting feature is that hodograph

transformations are not applicable to three dimensions.

One true field-based inverse method that also attempts to create airfoils which op-

erate with shock-free transonic flow is the fictitious gas method developed by Sobieczky

[105, 106]. This method can be incorporated into any potential flow solver. The basic

idea is to solve the mixed elliptic/hyperbolic flow system on an existing geometry by a

special procedure. The subsonic points are treated as usual with a standard potential

flow method. However, for supersonic points, the isentropic pressure-density relation

in potential flow is replaced by an appropriate analytic fictitious density relation. The

resulting solutions are correct in the subsonic regions and incorrect in the supersonic

regions. Next, the supersonic region (area under the sonic line umbrella) is re-solved

in the rheograph plane with a method of characteristics. The boundary conditions

for this recalculation are chosen so as to match the values at the sonic line boundary.

The solution then determines the streamline locations in the supersonic region and

therefore the position of the surface. The method is obviously not a complete geometry

design method, but must be thought of as a redesign technique for existing geometries.

It only ensures that the supersonic bubble will become stretched and shallow, but this

may be enough to ensure an entirely shock-free design. The method has been extended
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to three dimensions with some degree of success [22, 89], but requires marching the

solution of the supersonic zone transverse to the characteristic cone, which can lead to

instability.

The characteristic common to all inverse methods is their computational efficiency.

Typically transonic inverse methods require the equivalent of 2-10 complete flow solu-

tions in order to render a complete design. Since obtaining a few solutions for simple

two-dimensional and three-dimensional designs can be done in at most a few hours on

modern computers systems, the computational cost of most inverse methods is consid-

ered to be minimal. Unfortunately, they suffer from many limitations and difficulties.

Their most glaring limitation is that the objective of a target pressure distribution is

built directly into the design process and thus cannot be changed to any arbitrary or

more appropriate objective function. They cannot directly address other aerodynamic

objective functions such as lift, drag, or pitching moment. The user must therefore

be highly experienced in order to be able to prescribe surface distributions or choose

initial geometries which lead to the desired aerodynamic properties. In addition, the

target surface pressure distribution may not correspond to a physically realizable so-

lution. Thus, surface inverse methods, with the exception of Campbell's work, have

a tendency to fail because the target surface distribution does not satisfy the neces-

sary constraints to permit the existence of the desired solution. On the other hand,

field inverse methods typically only allow for the design of a single shock-free design

point and have no means of properly addressing off-design points. Furthermore, it is

difficult to formulate inverse methods that can satisfy the desired aerodynamic and

geometric constraints. In essence, inverse methods require designers to have an a

priori knowledge of an optimum pressure distribution that satisfies the geometric and

aerodynamic constraints. This limited design capability and difficult implementation

to date has restricted the applicability of inverse methods. An alternative approach

which has proven to overcome some of the disadvantages of inverse methods at the

price of computational expense is provided by the numerical optimization methods.
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1.2.3 NUMERICAL OPTIMIZATION METHODS

The final major group of aerodynamic shape design methods is the group employing

numerical optimization. The essence of these methods is very simple. A numerical

optimization procedure is coupled directly to an existing CFD analysis algorithm.

The numerical optimization procedure attempts to extremize a chosen aerodynamic

measure of merit which is evaluated by the chosen CFD code. The optimization

then proceeds by systematically modifying the configuration through user specified

design variables. Design variables must be chosen in such a way as to permit the

shape of the configuration to change in a manner that allows the design objective to

be improved. Most of these optimization procedures require gradient information in

addition to evaluations of the objective function. Here, the gradient refers to changes

in the objective function with respect to changes in the design variables. The simplest

method of obtaining gradient information is by finite differences. In this technique,

the gradient components are approximated by independently perturbing each design

variable by a finite step, calculating the corresponding value of the objective function

using CFD analysis, and forming the ratio of the differences. These estimates of the

partial derivatives form the gradient that is then used by the numerical optimization

algorithm to calculate a search direction using steepest descent, conjugate gradient,

or quasi-Newton techniques. The optimization algorithm then proceeds by estimating

the minimum or maximum of the aerodynamic objective function along the search

direction using repeated CFD flow analyses. The entire process is repeated until the

norm of the gradient approaches zero or further improvement in the aerodynamic

objective function appears impossible.

The use of numerical optimization for transonic aerodynamic shape design was

pioneered by Hicks, Murman and Vanderplaats [39]. They applied the method to two-

dimensional profile design subject to the potential flow equations. The method was

quickly extended to wing design by Hicks and Henne [37, 38]. Recently, through the

work of Reuther, Cliff, Hicks, and van Dam, the method has proven to be successful for

the design of supersonic wing/body transport configurations by its extension to treat
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three-dimensional flows governed by the Euler equations [91]. In all of these cases,

finite differences were used to obtain the required gradient information.

These methods are very versatile, allowing any reasonable aerodynamic quantity

to be used as the objective function. They can be used to mimic an inverse method by

minimizing the difference between target and actual pressure distributions, or they

may be used to maximize other aerodynamic quantities of merit such as ('d('d. Ge-

ometric constraints can be readily enforced by a proper choice of design variables.

Aerodynamic constraints can be treated either by adding weighted terms to the ob-

jective function or by the use of a constrained optimization algorithm. Unfortunately,

these finite difference numerical optimization methods, unlike the inverse methods,

are computationally expensive because of the large number of flow solutions needed to

determine the gradient information for a useful number of design variables. For three-

dimensional configurations, hundreds or even thousands of design variables may be

necessary. This implies that tens of thousands of flow analyses might be required for

a complete design.

1.3 ALTERNATIVE METHODS

Clearly, there is a need for alternative methods which have the flexibility and power

of current numerical optimization codes but do not require their large demand on

computational resources. These new methods must avoid the limitations and difficul-

ties of traditional inverse methods while approaching their inherent computational

efficiency.

1.3.1 GENETIC ALGORITHMS

An alternative approach which does not require gradient information is the Genetic

Algorithm (GA) method [16], where models of evolution are applied to a population

of designs. As this population evolves in time, only the "fittest" of the designs will

proliferate. This technique also has the advantage of avoiding the pitfalls of gradient-

based methods, such as arriving at a local minimum as opposed to a global minimum.
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The disadvantage of such an approach is that evolution can still be extremely expensive

because many analyses must still be performed before an optimum is found. The total

CPU costs of GA methods tend to match or exceed current gradient-based methods.

1.3.2 AUTOMATIC DIFFERENTIATION

Another alternative is the application of automatic differentiation. Here, a preproces-

sor applies the chain rule on a line-by-line basis to an analysis code, generating new

code for calculating analytic derivatives. While such a task would be daunting for a

human, programs such as ADIFOR [8] can perform this operation with relative ease.

Previous research efforts have applied automatic differentiation to the development

of design methods utilizing aerodynamic analysis codes based on linear theory. This

work has shown that the ADIFOR code can successfully differentiate analysis codes

and that analytic derivative information can be readily incorporated into an optimiza-

tion procedure. However, in certain circumstances the cost of utilizing ADIFOR may

not be significantly less than that of finite-difference gradient calculations. For the

results mentioned above, the ADIFOR-calculated derivatives cost approximately 1/3

as much as evaluating the derivatives by finite difference techniques. This significant

time savings was not a direct result of the efficiency of ADIFOR but was attributed to

multi-point fitting used in the finite difference method. These conclusions regarding

the costs are supported by the work of Newman et al. [32, 102], where ADIFOR was

applied to a thin layer Navier-Stokes code. The resulting derivatives were found to

be very accurate (where finite-differenced values may not have been), but the costs

were not significantly lower than those for the conventional approach. In any event,

current releases of ADIFOR do not yield the orders of magnitude cost reductions that

are needed.

1.4 CONTROL THEORY APPROACH

In this work the proposed solution to reduce the excessive CPU time associated with

acquiring gradient information is to use methods based upon control theory. The idea
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draws from the theory of control systems governed by partial differential equations

outlined by Lions [78]. It was applied to shape design for elliptic equations by Piron-

neau [86]. The use of control theory for transonic airfoil and wing design was first

proposed by Jameson [54], who also demonstrated a numerical implementation for

airfoil design using the transonic potential flow equation [551.

Suppose that the boundary is defined by a function f(b), where b is the position

vector of the design variables, and the desired objective is measured by a cost function

I. This may, for example, measure the deviation from a desired surface pressure

distribution, but it can also represent other measures of performance such as lift and

drag. Suppose that a variation _f in the control produces a variation bl in the cost.

Following control theory, _ l can be expressed to first order as an inner product

_l = (G,_f),

where the gradient G of the cost function with respect to the control is independent of

the particular variation bf, and can be determined by solving an adjoint equation. If

one makes a shape change

where _ is sufficiently small and positive, then

bl = -_ (G,G) < 0 (1.5t

assuring a reduction in 1. The method can be accelerated by choosing bf not simply

as a multiple of the gradient (steepest descent) but instead as a more sophisticated

search direction provided by numerical optimization.

For flow about an airfoil or wing, the aerodynamic properties which define the cost

function are functions of the flow field variables (w), the physical locations of the mesh

points within the volume (A'), and the physical location of the boundary (fl. Then

l = /(w,,Y,_-),

and a change in f results in a change

Ol :r Oir b , OIT b
41 : Ott---7_w+ _ ,1 + _ f (1.6t
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in the cost function. As pointed out by Baysal and Eleshaky [5] each term in (1.6),

except for 6w, can be easily obtained. _I o/ and ata_, a,v _y can be obtained directly without

a flow field evaluation because they are partial derivatives. 6_- is simply the surface

modification and 6,1" can be determined by either working out the exact analytical

values from a mapping as in Jameson's implementations [54, 55], or by successive grid

generation for each design variable, so long as this cost is significantly less than the

cost of the flow solution. For solutions requiring a large number of mesh points where

grid generation becomes expensive, an alternative method for calculating 6,t' can be

formulated using grid perturbation. Finite difference methods evaluate the gradient

by making a small change in each design variable separately, then recalculating both

the grid and flow field variables. This requires a number of additional flow calculations

equal to the number of design variables. Using control theory, the governing equations

of the flow field are introduced as a constraint in such a way that the final expression

for the gradient does not require multiple flow solutions. In order to achieve this

result, 6,,, must be eliminated from (1.6). The residual of the governing equation, R,

expresses the dependence of w, ,l" and 9r within the flow field domain D,

R(w,A',F)= O.

Thus b w is determined from the equation

1
Next, introducing a Lagrange multiplier _,, we have

61 - Oft f)IT " oIT q,T([ OR]
0W _W + _6,1 + -b-7_)r -- \t J_ 6,,, +

6)r = 0. (1.7)

Choosing _/,to satisfy the adjoint equation,

[ORl" :
Ou, J &,,'

(1.8)

(1.9)
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eliminates the first term of(1.8) resulting in

_I = [ OIT

[ 0,1"

This can be written as

where

___t,,T _ 5,l'+ O.r
(1.10)

_I = GT&T (1.11)

]= o,l--:- V2 + a-Y- (1.12)

The advantage is that (1.10) is independent of 5 w, with the result that the gradient of

I with respect to an arbitrary number of design variables can be determined without

the need for additional flow field evaluations. The main cost is in solving the adjoint

equation (1.9). In general, the adjoint problem is about as complex as a flow solution.

If the number of design variables is large, the cost differential between one adjoint

equations solution and the large number of flow field evaluations required to determine

the gradient by finite differences becomes compelling.

Instead of introducing a Lagrange multiplier, _',, one can solve for bw directly from

equation (1.7)

and insert the result in (1.6). This is the implicit gradient or direct approach which is

essentially equivalent to the control theory approach, as has been pointed out by Shu-

bin and Frank [103, 1041. The difference between the direct and adjoint approaches

lies in the differences in the right hand sides of(1.9) and (1.13). For the adjoint ap-

proach the right hand side depends upon the objective function(s), while in the direct

approach the right hand side is a function of the design variables. If the inversion

[oR1r
of [_,j or l,_,,,] is calculated directly, the two methods become identical with only a

different order of multiplication. However, if equation (1.9) or (1.13) is solved without

direct inversion, say by an iterative procedure, then the two methods become quite dif-

ferent since each right hand side requires a separate solution. Thus, the determining

factor on which to choose is then settled by examining the design problem. If the num-

ber of design variables is greater than the number of independent objective functions
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and constraints then the adjoint method prevails. The opposite is true if the number

of design variables is low compared to the number of objectives and constraints.

Once the gradient is calculated by (1.12), a modification following (1.5) can then

be made. After making such a modification, the gradient can be recalculated and the

process repeated to follow a path of steepest descent until a minimum is reached. In

order to avoid violating geometric constraints, such as a minimum acceptable airfoil

thickness, the gradient may be projected into the allowable subspace within which

the constraints are satisfied. In this way, procedures can be devised which must

necessarily converge at least to a local minimum. The efficiency may be improved

by performing line searches to find the minimum in a search direction defined by the

negative gradient, and also by the use of more sophisticated descent methods such as

conjugate gradient or quasi-Newton algorithms. There is the possibility of more than

one local minimum, but in any case the method will lead to an improvement over the

original design. Furthermore, unlike the traditional inverse algorithms, any measure

of performance can be used as the cost function.

In this research the adjoint approach is used to permit a dramatic reduction in

the computational cost of each design solution since the gradient cost will be reduced

to the cost of approximately two flow evaluations (provided the adjoint equations are

about as computationally expensive as the flow equations) instead of the traditional

_ ÷ 1 evaluations where 7) is the number of design variables. The key point is that

the cost of the optimization method is no longer proportional to the number of design

variables, which has been the limiting factor in finite difference-based aerodynamic

optimization methods.

Another significant advantage of the adjoint method is its applicability to multi-

point design problems. Because of its efficient use of computer resources, two or three

design points can be included in the optimization procedure by solving separate adjoint

problems for each design point and then defining the total gradient as a weighted

combination of the gradients for each of the individual design points. This will allow

the performance benefits at various design points to be considered together, yielding

a more optimal overall design. If the number of design points becomes larger than
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the number of design variables, the switch should be made to the direct method of

equation (1.13) thus yielding a process requiring a number of solutions equal to the

number of design variables. Even in this case a large benefit is still realized when

compared with finite difference calculations where the number of solutions required

to complete the gradient is mm where m is the number of design points.

1.5 CONTINUOUS VS. DISCRETE SENSITIVITY ANALYSIS

By continuous sensitivities it is implied that control theory is applied directly to the

partial differential equations governing the flow solution, thus forming the adjoint

equations also as a system of partial differential equations. These adjoint differential

equations are then discretized and solved in the same manner as the flow equations

to obtain the necessary gradient information. This approach was first used for aero-

dynamic design in the presence of transonic flows by Jameson [54, 55]. The ideas pre-

sented in these early works have been independently verified by Lewis and Agarwal

[75, 76, 74]. Jameson's initial formulations were derived in conjunction with analytic

grid mappings to obtain, directly at the differential level, the necessary systems of

equations defined by equation (1.12). Regularization procedures were introduced to

ensure that the adjoint equations remained well posed despite the presence of disconti-

nuities in the flow. The use of analytic mappings in Jameson's initial works restricted

the technique in the past to relatively simple geometries such as airfoils and wings.

One may alternatively derive a set of discrete adjoint equations directly from the

discrete approximation to the flow equations by following the procedure outlined in

equations (1.6 - 1.13). The resulting discrete adjoint equations are one of the possible

discretizations of the continuous adjoint equations. This approach (discrete sensitivity

analysis) is now adopted in the work of Taylor, Newman, Hou, et al. (83, 70, 43, 68,102]

and also Baysal, Eleshaky and Burgreen [4, 5, 6, 11, 3, 18, 19, 10].

It seems that both alternatives have some advantages. The continuous approach

gives the researcher some hope for an intuitive understanding of the adjoint system

and its related boundary conditions. The discrete approach, in theory, maintains per-
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fect algebraic consistency at the discrete level. If properly implemented it will give

gradients which closely match those obtained through finite differences. The contin-

uous formulation directly approximates the gradient corresponding to the differential

equations, and incurs discretization errors which do not necessarily correspond to the

discretization errors in the flow solution. Thus, it does not provide the exact gra-

dient corresponding to the discrete flow equations. However, these discrepancies in

the discretization errors must vanish in the limit as the mesh width is reduced. The

discrete sensitivity approach in fact produces one of the possible discretizations of the

continuous equations.

An advantage of the continuous formulation is that the discretization and iteration

scheme used to solve the flow field system can be easily adapted for use in solving the

adjoint system. Therefore, the robust iteration algorithms and convergence accelera-

tion techniques that have been matured for CFD algorithms can be directly ported for

the solution of the adjoint system.

The recycling of the flow solution procedure for the solution of the adjoint equa-

tions developed from a discrete sensitivity approach does not appear to be as easy.

The level of difficulty in this recycling for the discrete approach is intimately con-

nected to the algorithm used for the flow solution. For methods such as those used

by Young et al. [115, 42] where GMRES (Generalized Minimum Residual) is used to

solve the very large linear algebra problem, the issue of constructing a discrete adjoint

[_n] with its transpose. In the casesolver involves simply replacing the Jacobian

of the explicit solvers used in many of Jameson's codes, a discrete sensitivity based

adjoint equation solver may be constructed by working out some tedious algebra to

obtain the symbolic form of the adjoint equation residual ([_R] T[_-_l _,) such that it may

replace the flow field residual, R, within the flow solver. For flow solution methods

requiring particular decompositions and/or approximations to the Jacobian, such as

approximate factorization, the reformulation of the iterative procedure to calculate

the adjoint equation solution may be considerably more complex unless the structure

of the continuous adjoint is used as a guide. The application of the continuous sensi-

tivity analysis fosters the easy recycling of the flow solution algorithm in any of these
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cases, since the steps applied to the original governing differential equations can be

duplicated for the adjoint differential equations.

Due to this difficulty in recycling of the flow solution process, many present discrete

sensitivity methods resort to matrix elimination methods to solve (1.9t or (1.13). While

direct techniques to solve these large sparse systems can be robust and reliable they

suffer when the number of mesh points becomes large because the operational count

grows as O(_/_ 2) and the storage goes as O(/_b), where it is the number of unknowns

and /_ is the bandwidth. It is thus impractical to use direct methods in all but the

smallest problems. Therefore, in order to solve larger systems, alternatives such

as sophisticated matrix decomposition [72] or incremental iterative [69} strategies

have been employed. These methods have shown modest improvements over standard

Gaussian elimination, but they have not proven to be as efficient as methods developed

for CFD. When the number of mesh points becomes large, especially in the case of three-

dimensional problems, the O(i_) operational counts and the O(i_) storage of explicit

iteration schemes used in many CFD methods can, if applied in an adjoint solution

strategy, significantly reduce its time and memory requirements.

In general, competitive discrete sensitivity methods will have to be able to solve

the adjoint system with approximately the same computational resources as required

for the flow solution algorithm. Present work by Taylor et al. [69] to develop such

methods shows promise. The same group has also shown that discrete sensitivity

analysis can be approached by using the ADIFOR software discussed above [102]. A

challenging aspect of discrete sensitivity analysis is obtaining the exact dependencies

of R with respect to u, such that the flux Jacobian can be obtained. For complex

CFD codes which rarely, if ever, construct [_] explicitly, this can be daunting. It

turns out that if ADIFOR is used on selected subroutines, these dependencies can

be obtained automatically. Unfortunately, this approach has only been explored for

methods that solve the direct problem (1.13) and not the adjoint problem (1.9). Hence

the computational cost is still proportional to _ flow solutions. The best compromise

may be to formulate the problem using a continuous approach, which gives a far deeper

intuitive understanding of the adjoint system and its boundary conditions, and then
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to augment it with consistency checks obtained from discrete sensitivity analysis.

1.6 OTHER APPLICATIONS OF CONTROL THEORY IN AERODYNAMICS

A variety of alternative formulations of the design problem, other than the ones dis-

cussed thus far, may be treated systematically within the framework of the mathemat-

ical theory for control of systems governed by partial differential equations [78]. Other

applications of control theory in aerodynamics have been explored by Pironneau for

optimum shape design of systems governed by elliptic equations [86]. More recently

Pironneau [87] as well as Huan and Modi [40, 41] have studied the use of control the-

ory to solve design problems subject to the incompressible Navier-Stokes equations.

Ta'asan, Kuruvila, and Salas have implemented a "one-shot" approach in which the

constraint represented by the flow equations is required to be satisfied only at the final

converged solution [107, 71]. While the method has currently been explored only for

potential flows without shock waves, it remains an intriguing option. Their method

is similar to the work presented here in that they use the continuous sensitivity ap-

proach. The difference lies in the order in which the design process is evolved. While

the work here decouples the design problem into separate parts (flow solver, adjoint

solver, optimization algorithm) Ta'asan et al. have attempted to couple the systems

strongly through the use of multigrid algorithms. While this process does not lend

itself to coupling with more sophisticated optimization algorithms, where errors in the

gradient can have adverse effects, it may lead to efficient design procedures by virtue

of the concurrent convergence of the three systems. More investigation using the

approach will be necessary in order to demonstrate success on applications involving

transonic and supersonic problems, where the nonlinear interactions may impede its

convergence.
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1.7 GOALS FOR THIS RESEARCH

In this research the continuous sensitivity approach employed by Jameson and verified

by Lewis and Agarwal will be extended to allow the treatment of more complex geome-

tries. This will be accomplished by foregoing the reliance of the previous method on

an analytic mapping, in favor of a general finite volume formulation combined with a

grid perturbation method. The research will also introduce the use of both alternative

design space parameterizations and an alternative design space search strategy. Two

different parameterizations in the form of Hicks-Henne functions and B-spline con-

trol points will be tested. The design space search strategy will be an unconstrained

quasi-Newton method which has frequently been used for finite difference optimiza-

tion problems. In addition, various discretization procedures for the adjoint systems

that result from the application of continuous sensitivity analysis, including ones that

mimic the discretization arrived at if discrete sensitivity analysis were employed, will

be presented.

These issues will be explored for both the potential flow and Euler equations.

Both equation sets represent inviscid models of the flow physics. The potential flow

equation introduces the further approximation that it does not admit the production

or convection of vorticity and entropy. While the inviscid approximation will be used

throughout this research, it is by no means a restriction for control theory-based design.

The purpose of developing the two different design methods is to demonstrate the

applicability of using control theory on different problems. Specifically, the difference

in character between the two governing systems will have dramatic implications for the

creation of the two design methods. For the application to the second-order potential

flow equation, the Laplacian-like character of the difference operator, combined with

the fact that only a scalar valued variable is involved, results in a straightforward

development of the costate boundary conditions. In contrast, the first order hyperbolic

nature of the Euler equations, combined with their vector form, results in an initial-

valued costate system whose boundary conditions must be addressed with great care.

On the other hand, the easier treatment of the boundary conditions for the potential
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flow costate will be offset by its more difficult development of the related differential

equations to define the adjoint equation. This greater difficulty will result primarily

from the existence of a jump in the potential flow solution to account for the circulation

which is not necessary for the Euler equations.

In order to gain an even greater understanding of various issues concerning the de-

velopment and implementation of control theory based design, the two design methods

will employ different solution techniques. The potential flow equation and its related

costate system will be solved by an alternating direction implicit (ADI) scheme, while

the Euler equations and their costates will be solved by a Runge-Kutta-like explicit

scheme. Regardless of this choice, it will be shown that determining the details of the

solution algorithm for the costate systems by recycling those used for the corresponding

flow systems is greatly eased by the use of continuous sensitivity analysis.

To illustrate the viability of design via control theory as more than a point of

academic interest, the technique will be applied to modern ultra-fast CFD codes that

incorporate multigridding. The complementary multigridding of the adjoint systems

will also be included such that the adjoint solution will place no higher demand on the

computational resources than the flow solution. Several examples will be presented

illustrating the capabilities and limitations of the technique in comparison with more

traditional methods.
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Chapter 2

MATHEMATICAL MODELS FOR FLOW

PHYSICS

The development of the two new airfoil design methods in this work is based on numer-

ical techniques for solving the potential flow and Euler equations that approximate

flow dynamics. These two models represent different levels of approximation for the

flow physics, and thus obtain different solutions. Both are inviscid approximations

and are therefore only realistic for the treatment of problems where viscous effects do

not play a dominant role in the aerodynamics. This chapter develops both sets of equa-

tions and discusses the consequences of their respective approximations. Further, this

chapter describes the discretization methodology and solution procedures employed

for both systems. The development of two different design methods, depending on two

different sets of governing equations, which are solved by different solution strategies,

extends the understanding and applicability of aerodynamic design via control theory.

2.1 GOVERNING CONSERVATION EQUATIONS

Mathematical models are used to describe physical phenomena with varying degrees

of accuracy. Within the field of fluid dynamics, the mathematical representation of the

conservation laws of mass, momentum, and energy define the governing equations.

Many formulations of these laws are possible, and can be found in a variety of texts.

For a fixed control volume with respect to an inertial reference frame and a non-

reacting fluid with no sources or sinks of mass, momentum or energy, the governing
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equations may be stated in integral form as (cf., Aris [1], Hansen [35, 34], and Thomp-

son [109]):

Conservation of Mass

-_ pdl3 + p(v.n)dS = 0

Conservation of Momentum

:/,,s
Conservation of Energy

d

(2.1a)

(2.1b)

q.ndS, (2.1c)

where p is the density, v is the velocity vector, t is the surface traction vector, q is the

heat flux vector, E is the total energy, n is the surface normal, and V and $ are the

volume and surface respectively. They may also be stated in differential form:

Op
O-7+V.pv = 0

Opv
--+_7.pvv = V.T

OpE
O---t-+ V.pEv = _7.(T.v) - V-q,

where T is the stress tensor including the pressure. These equations are typically

referred to as being in conservative or divergence form.

2.1.1 THE THERMODYNAMIC STATE

Solving the above conservation equations requires that the thermodynamic properties

of the fluid system be specified. Thus, an equation of state is needed. Additionally,

the assumptions of a thermally perfect (p = pRT) and calorically perfect (? - _ --
Cv

constant) fluid will apply. Consequently, the fluid is a calorically perfect gas.
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2.2 THE EULER EQUATIONS

The governing equations given thus far have been presented with only limited ap-

proximations. For this research the equations are further simplified. The first design

method employs the potential flow equation as a basis of formulation while the second

design method uses the Euler equations. Here, for the sake of clarity, it is convenient

to develop the Euler equations first.

Ignoring viscous and heat transfer effects leads to the development of the Euler

equations, which in integral form are:

d-t pdl2 + p(v.n)dS = 0 (2.2a)

_ pEd_2+ pH(v.n)d$ = 0, (2.2c)

where H is the total enthalpy. The conservative differential form of the Euler equations

is

For a perfect gas,

and

Op
d_--/+ V.pv = 0 (2.3a)

Opv
-- + V.(pvv)+ Vp = 0 (2.3b)

OpE
O--_-+ V.pHv = 0. (2.3c)

{ ' /p=(_-l)p g-_(v.v)
(2.4)

pH = pE + p. (2.5)

Equations 2.3, with the perfect gas conditions, form a system of hyperbolic partial

differential equations which very accurately models many commonly occurring flow

phenomena in aerodynamics. The numerical treatment of this system of equations is

addressed in Section 2.5.
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To derive the potential flow equation used in the first design method, further sim-

plifications are necessary.

2.3 THE POTENTIAL FLOW EQUATIONS

In the absence of shock waves, an initially irrotational flow will remain irrotational,

and we can assume that the velocity vector v is the gradient of a potential ¢. In the

presence of weak shock waves this remains a fairly good approximation.

The differential form of the continuity equation (2.3a) may then be rewritten as

Op
-- + V.(pV¢) = 0, (2.6)
Ot

the time-dependent potential flow equation. In order to complete the equation, an

expression for p must be obtained in terms of the potential ¢. This can be achieved

by rearranging the perfect gas equation for pressure (2.4) with the added assumption

that the flow is isentropic, giving

!

{1 o:/1}C_

where

P" c2 7P (2.8)
P-M2. - p

Here MR is the Mach number in the free stream, and the equations have been non-

dimensionalized so that p and v have the value unity in the far field. The next section

presents a methodology to solve this equation.

2.4 POTENTIAL FLOW SOLUTION METHODOLOGY

Separate numerical procedures are used to obtain solutions of the potential flow and

Euler equations. In each case the computational domain is constructed as a set of

discrete cells which completely tessellates the flow field region of interest. For two-

dimensional profiles the computational domains extend from the geometry surface to

an outer boundary where deviations from free stream conditions are small. Although
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Figure 2.1: Mesh used for the Potential Flow Equation in the Physical Plane

it is possible to tessellate these domains with many mesh types, for this work two-

dimensional body-fitted structured meshes are used exclusively. Once such a mesh is

created, a solution procedure for a given set of governing equations must be defined.

2.4.1 FINITE VOLUME FORMULATION

In the first design method, the potential flow equation derived in Section (2.3) is

used. The numerical solution procedure for this equation is based on the methodology

developed by Jameson [45, 46, 44, 47, 64, 15, 51, 48] and realized in his FLO42 airfoil

analysis computer program. The method is a finite volume technique which is applied

to a body-fitted grid such that the boundaries are grid lines. The solution _ is defined

at the mesh points and the variables p, u and v are defined at the cell centers. Figure

2.1 illustrates a typical i, j cell with its neighbors. The steady state potential equation

can be written in differential form in a Cartesian coordinate system as

'_d (pu) + t)
Ox _ (p_') = O,

(2.9)
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where

u = Ox, v = Cy

and p is defined by equation (2.7). Equation (2.9) can be transformed into an arbitrary

coordinate system ((, 7/) by defining

Ox _}x

a_

Let J be the determinant of K:

and h'-l=

0_) 07/

_9x ,_y

Now

.] = detlKi _ Oxi)y OxOy
0_ i)7_ 07j O_

{ {::} Ox Ox

and also

I:}:
We can now write the potential flow equation as

..--; (pjlI)+ _ (pJV) = 0 in D.
Cu m/

Here, l ,_and t" represent the contravariant velocities

(2.10)

(2.11)

(2.12)

V} 1

a{

;}___

ag

= h "-1 (2.13)
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and

with

--.A

All A12 1
A21 A22

= A.-1KT-'= (A.7"K) -1

Thus by noting that A is symmetric we have

U =All@( + A120,_ (2.14)

t' = A12¢( + A22_bv. (2.15)

The speed is now determined from (2.11) and (2.13) by the formula

q2 = 11¢(+ V0,).

To formulate a numerical scheme for the potential flow equation, Figure 2.1 illustrates

a typical cell with its neighbors which is locally transformed into a Cartesian unit cell.

Next the quantities x, y and O within the cell with vertices 1, 2, 3 and 4 are defined by

the following bilinear mapping:

1
w

4 {xl(1 - (1)(1 - 7/l) + x2(1 + _1)(1 - 711)+ xa(1 - (l)(1 + '/l) + x4(1 - (L)(1 - ,/l)}

1

4
- - {yl(1 - (i)(1 - '/l) + y2(1 + (l)(1 - 7/1) + g3(1 - (_)(1 + 7/1) + g4(1 - _l)(1 - 'It)}

1
0

4
{_bl(1 - (i)(1 - ,/l) + 02(1 + {¢)(1 - ,Jl)+03(1 - {l)(1 + T/l) + 04(1 - (1)(1 - _/t)}

where (l and 71Lare the local coordinates for the cell and vary between -1 and 1. This

corresponds to isoparametric finite elements. It results in convenient formulas at the

cell center since quantities for x, y and ¢5become simple averages. The mesh metrics

and partial derivative of ¢ are then defined at the cell centers as

Ox 1
= = N(X4 -- X3 -1- X2 -- Xl)
0¢ z

Oy 1

O( 2
(Y4 - ya + y2 - Yl )

t)x 1

2(x4 - x2 + x3 - Xl)0,1
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Oy 1

071 - 2(y4-y2+y3-yl)

0¢ 1
- .(¢4-_3+_-01)

0_

0¢ 1
07/ - 2 (04- ¢_ ÷_3-4)1)

with the other unknowns such as (I, V, q and the terms of A obtained as multiples of

these quantities. The flux balance is then constructed in the computational plane by

averaging of the cell-centered quantities along the edges of a secondary finite volume

shown in Figure (2.2) to give

(pJU)i+½,_+ ½ +(pJU)i , -(pJ -(pJU)i_½+_,__½ u),_½,j+½ ,j__

+(pJV),+_,j+_ +(pJV),__,j+_-(_JV).,. '*_,J-_' -(p3V)___,j__ = 0 (2.16)

This scheme, combined with an effective iteration algorithm, suffices for subsonic flow
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Figure 2.2: Mesh for the Potential Flow Equation in the Computational Plane

calculations where the entire flow domain is elliptic. To model transonic flows where

embedded regions of supersonic flow create a type switch in the governing equation to

hyperbolic, a modification to these equations is necessary.
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2.4.2 MIXED TYPE EQUATIONS AND DISCONTINUITIES

Typically, numerical schemes to solve the discrete form of the governing equations for

fluid dynamics require the addition of non-physical terms to ensure proper stability.

These artificial terms are required for many reasons. Use of the potential flow equation

to model transonic conditions poses a considerable problem because this equation

models discontinuities as isentropic jumps. Thus the equation allows both expansion

and compression shocks. To eliminate the possibility of non-physical expansion shocks

in the solution, artificial viscous terms which destroy the symmetry of the potential flow

equation should be added to produce upwind biasing. The Euler equations, developed

later in this chapter, do not suffer this type of difficulty since only entropy-producing

compression shocks are admitted.

However, regardless of the choice of the governing equation, discontinuities in

the flow field present difficulties for the numerical scheme. For the flow of a real

fluid, entities such as shock waves or contact discontinuities are regions where large

gradients in particular flow properties exist. The length scales of these regions are

typically orders-of-magnitude less than the characteristic dimensions of the flow field.

Under the approximation of a perfect inviscid fluid, these narrow regions of high

gradients should be treated as true discontinuities.

When a domain is to possess discontinuities, care must be taken in the construction

of a numerical scheme. The numerical scheme must be capable of reproducing the ef-

fects of the discontinuity, while anomalies such as multi-valued points must be avoided.

This dilemma is usually handled in one of two ways. The first, shock-capturing, in-

corporates artificial dissipation to smear a discontinuity into a continuous, smooth

region. The other, shock-fitting, splits the computational domain at discontinuities

and uses jump conditions (obtained from conservations laws) to set conditions on the

boundaries of the newly formed sub-regions. Shock-fitting is useful in that it can, in

theory, precisely represent a discontinuity of proper strength and location. However,

it is difficult to implement because locating one or more shock waves and splitting the

computational domain can be tricky and tedious, particularly in the case of complex
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three-dimensional flows.

Shock-capturing yields adequate results if the discrete shock is represented by a

few points and the computational domain contains a sufficient number of points in

the vicinity of the discontinuity, thereby confining the extent of smearing to a limited

region. The magnitude and extent of this error due to smearing are functions of the

mesh size in the region of the discontinuity and the type of numerical dissipation used

to smear the shock. Nevertheless, it is possible for shock-captured solutions to agree

well with those produced by exact jump conditions. Both of the methods presented in

this work rely upon shock capturing to model discontinuities in the flow field.

2.4.3 ARTIFICIAL DISSIPATION

Returning to the development of a solution procedure for the potential flow equation,

the previous section outlines the logical next step. Upwind biasing must be added to reo

gions where the flow is supersonic to eliminate spurious expansion shocks which might

otherwise appear. The symmetry of the potential flow equation which permits both

compression and expansion shocks can be removed by the addition of small artificial

dissipation terms. The governing equation is rewritten as

0 t)
=(pJu + e) +  (pJy + Q) = o,

(77/

where P and Q are constructed such that

Op
t' approximates - t_JJUl_

Op
Q approximates - fiJ tlrl t),--)"

(2.17

The coefficient # is then set to the switching operator,

where Mc is a critical Mach number set close to 1, such that li becomes zero in subsonic

regions giving P = O = 0. The form of P and Q approximates a shift in the location of

where p is evaluated in the original equation (2.12). The analogy is exact for positive
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flow on a Cartesian mesh since ,] = 1, giving

0 ^0p 0 (V(p+ ^0p

To avoid incorporating unnecessary complications, the upwind biasing is implemented

_p ,'_p
by adding approximations of the terms _ and _ directly to the difference formula

(2.16) without resorting to the finite volume expansion. These approximations for

and _ are obtained by realizing that from equation (2.7),

Op _ p 0 fq2_\)
_)_ 2c 20_

Op p 0
0,1 - 2c 20,1 [ "_q2)"

(2.19)

By substituting (2.17) into (2.19) and using the symmetry of A we can develop the

approximations,

[, _P'] (U2¢_(+ UV¢ot)

ApJ V2C,m) .0 = ;'7 +

P and Q can be calculated at the cell edges from

f'i,_ if U> 0l'i+½'J = :' if t ,_< 0
-[i+l,j

(JW if V > 0Q,,j+½ = _ (2.20)
-Qw+i if V < 0

The new numerical system can treat both subsonic and transonic conditions and does

not admit isentropic expansion discontinuities.

A close examination of this scheme, which reduces to (2.16) in subsonic regions,

shows that one mode of instability still persists. If the finite volume scheme is ex-

panded for a Cartesian mesh with incompressible flow, it reduces to a rotated five

point Laplacian operator given by

0i+1,2+1 + 0i+1q-1 + 0,-1,2+1 + 0i-1,2-1 -- 40i,2 = O. (2.21)
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The difficulty arises because this scheme allows two superimposed solutions to exist

that are offset to create a checkerboard pattern of odd-even decoupling. To prevent

the solution from decoupling in this manner, the scheme is adjusted with terms which

rotate the stencil back. By introducing the averaging and differencing operators

g,_(fi,j) = -_

1

(L,j) = (L+I,j + 2f,,j + = (L,j)

:_< (fi,,) = (fi+l,_ - 2f,,j + f,-1,j) = b<_<(f,j),

where f is an arbitrary function and similar formulas are defined for the 71direction,

we can define the difference operator (2.21) for incompressible flow on a Cartesian

mesh as

(u,m$_ + u_,,,,)¢ = 0. (2.22)

Note that multiple operators commute, whether they are multiple subscripts as in _((

or multiple operators such as ,,,,,_b(_. Henceforth in this text, t) will imply average

operators and _ will imply difference operators. Now by augmenting the operator

(2.22) with the term a_,_,_0 and setting cr = ½, the standard five point stencil can be

recovered, which eliminates the decoupling. The actual difference operator for general

flows and meshes can be similarly augmented with the appropriate terms. These may

be written as

where

U 2
A (_) = pJ(All c-_)

_ 2

A ('j) -- pJ(A22 - -_).

The difference formulation is now complete and can be fully written out as

O,
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(2.23)

Details of the numerical scheme are given by Jameson [44, 45, 46, 64, 15]. The next

step is to construct an iteration scheme to solve (2.23).

2.4.4 ITERATION SCHEME

A generalized alternating direction implicit (ADI) procedure is used to converge the

discrete system of equations given by (2.23). The difference operator S is now intro-

duced as

Z = d,o + _V_- + _2_,_

where _- and _,T are defined as one-sided differences biased in the direction of the

ADI sweep. Now by linearizing equation (2.23) about a perturbation potential _¢, and

dropping higher order terms the ADI scheme can be formulated as

(2.24)

where ,_ is a relaxation factor, £ is the operator defined by (2.23), _ is the correction

operator, b_ and b, are the shifted operators defined so as to be consistent with (2.20),

and

ftpd U 2

[) - (.2

f_pJV 2
Q __

c 2

This scheme can be considered a discrete approximation to the time-dependent equa-

tion

/3o¢t + _1¢_t +/324_,jt = £0 (2.25)

where the coefficients _o, /_i and /_2 are related to the parameters _o, (_i and _2.

The advantage of using Z in equation (2.24) to drive the ADI cycle, as opposed to a

traditional constant, is that the corresponding time-dependent equation (2.25} remains

hyperbolic irrespective of the signs of A(() and A ('_). The relaxation scheme (2.24) is
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performed in two stages. The first stage involves solving

for T. Recalling that Z has one-sided differences, the system is thus solved in a line

by line process where information from the previous line has already been updated

and each line is solved implicitly. For this first step the domain is split into two parts

about the leading edge of the airfoil. The solution is then swept downstream around

the airfoil separately but symmetrically for the upper and lower halves. Each line of

the solution requires that a scalar penta-diagonal solver be used for T. Once a single

pass of this split sweep is completed in the ( direction, the second part of the solution

follows by solving

for the desired correction _,_+i. This system is also solved in a line by line scheme,

but with the sweep direction running in the 71direction from the outer boundary

inward. While this choice is somewhat arbitrary when compared with the obvious

sweep direction chosen for the _ direction, the technique still improves convergence by

capturing and transmitting inward the updated value of the circulation specified at

the outer boundary. More details of the scheme are presented in [46, 48, 44, 47].

2.4.5 CONVERGENCE ACCELERATION

Convergence acceleration is especially important in design applications since more

than one complete flow solution will be required. Thus even with the efficient ADI

scheme presented in the last section, convergence may still be too slow.

MULTIGRID ACCELERATION

One method of enhancing convergence performance of many numerical schemes is by

the use of a multigrid method. The idea, presented by Jameson [51] for transonic

potential flows, is to add corrections to the solution based on calculations obtained by
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using different mesh densities. The corrections from different meshes are advanta-

geous for two reasons. First, the calculations of the updates on coarser meshes are

much cheaper since they involve significantly fewer grid points. Second, a coarser

mesh converges faster since, if the scheme is not fully implicit, information propa-

gates at speeds proportional to the physical mesh widths. If a sequence of meshes

are defined with different degrees of fidelity, the coarser meshes will propagate lower

frequency modes in the solution, while the finer meshes permit the resolution of the

higher frequencies. In other words, a system of meshes superimposed on the same

domain with varying resolutions allows for the construction of solution procedures

that avoid the need for the fine mesh solution process to transfer the entire band of

solution frequencies.

To implement a proper multigrid algorithm, a sequence of meshes must first be

defined with varying degrees of fidelity. For structured meshes, as are used in this

research, the obvious choice is to construct coarse meshes from fine meshes by elimi-

nating every other mesh point. By repeatedly applying this concept starting from an

initial fine mesh, a sequence of successively coarser meshes can be constructed. The

second important issue with any multigrid procedure is to ensure that convergence

is achieved and accelerated with respect to the finest mesh. Thus, the developing

solution on the fine mesh should be used to drive the solution on all coarser meshes.

To illustrate this procedure, consider the linear problem

_/Of = 0

where g/ is a linear difference operator defined on the fine mesh, and Of is the fine

mesh solution. In delta form this can be written

(2.26)

where the subscripts denote whether the mesh is fine or coarse and the superscripts

determine the iteration count. Now instead of solving this equation successively on

the fine mesh alone, we can define on the next coarser mesh in the sequence:

/_cbO:. '+1 = --Ccq_ _ + _-_, (2.27)
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with

where/:_ is a collection transfer operator that moves a quantity from the fine grid

to the coarse grid. Note that the residual on the fine mesh replaces the coarse mesh

residual and becomes the forcing function to drive the solution. After solving for _¢_,+1,

the solution on the fine mesh can be updated with the interpolation transfer operator,

1: + +1

The entire solution process can be defined by first calculating the correction on all

meshes, starting from the finest mesh according to (2.26), and proceeding on all coarser

meshes by (2.27), and then interpolating all these corrections back to the finest mesh.

The procedure defined by equations (2.26) and (2.27) is employed to solve the

nonlinear system defined by (2.24). For a more complete treatment of the process

and an understanding of its connection to the ADI method, see references [47, 48, 51 ].

Another example of the implementation of the multigrid algorithm is given in Section

2.5.4 where it is applied to the Euler equations.

2.4.6 BOUNDARY CONDITIONS

Solutions of the governing equations require that appropriate conditions be specified on

the bounding surfaces of the computational domain. It is crucial that these conditions

be modeled properly to ensure a correct solution. For the domains used for the potential

flow equation three classes of boundary conditions are necessary: solid walls, far fields

and the Kutta condition.

SOLID SURFACE BOUNDARIES

Solid boundaries must be modeled by a no-penetration condition that still permits slip.

Such a boundary condition is satisfied by setting _ = 0. This Neumann boundary

condition is easily satisfied in our present formulation because meshes are constructed

such that the faces of the computational cells are coincident with the surface. The

construction of the computation cell depicted in Figure (2.2) at the surface is shown in
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Secondary Confrol Volume
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Figure 2.3: Mesh for the Potential Flow Equation at Airfoil Surface in the Computa-
tional Plane

Figure (2.3), and implies that the Neumann condition is satisfied by setting t" = 0 for

the faces on the boundary of the airfoil (71 = constant boundary).

THE KU2"rA CONDITION

In calculations with lift, the circulation has to be adjusted to satisfy the Kutta con-

dition. In two-dimensional flows this involves only a minor complication. Along the

cut-line (dividing line of the structured mesh leaving the trailing edge) there should be

a constant jump F in the circulation. If we use an O-mesh this can easily be accommo-

dated by subtracting a term _ from the potential, where 8 is measured along the mesh

at the outer domain and remains constant along the ?!lines. This does not map in the

physical plane to a pure circulation component except at the outer domain. However,

any necessary adjustments will be incorporated into the perturbation potential so that

the governing equation is still satisfied. The perturbation potential also has the free

stream component subtracted with the result that it is a single-valued function that

can be solved with a periodic boundary condition along the cut-line. The value of the
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circulation constant F must be updated as part of the solution procedure. If the trailing

edge is assumed sharp, it forms a singularity in the potential flow solution unless

F

¢( = ec;_ - 2-_ + e_'_ = 0, (2.28)

with the convention that _ is the total potential, ¢(; is the perturbation potential, and

0u_. is the free stream potential. The term related to the circulation potential has

been simplified with the assumption that an O-mesh is being employed with _ as a

linear function of _. This condition forces the tangential velocity at the trailing edge

to be zero. By enforcing (2.28) as part of the solution procedure, F may be updated

iteratively such that the Kutta condition is satisfied.

FAR FIELD BOUNDARIES

The outer boundary is treated as a Dirichlet boundary condition in which the value of

the perturbation potential is prescribed by subtracting out the free stream conditions

as well as the circulation potential. The accuracy of this approximation improves as

the outer boundary is extended further from the surface geometry.

2.5 EULER SOLUTION METHODOLOGY

As in the case of the potential flow equation, a numerical discretization and solution

procedure is necessary for the Euler governing equations.

2.5.1 FINITE VOLUME FORMULATION

Again a finite volume methodology developed by Jameson, [66, 49, 63, 50, 61, 57, 51, 53,

62, 52, 60] and realized in his FLO82 computer code is used as a basis. Unfortunately,

the solution procedure for the potential flow equation cannot be directly used for the

Euler equations, since in the subsonic zone, the former is second order and elliptic in

character, while the latter are first order and hyperbolic. This difference in equation

type requires the use of an alternative solution method.
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In compact form, the Euler equations (cf equation 2.2) may be written as

-- : wdV+ F.ndS=0. (2.29)
dt Jv

Here, w is a vector of dependent variables, F is a flux matrix, and n is a surface unit

normal oriented outward from the volume. These are defined in two dimensions as

p

pu
W _ _ , , F _

pv

pE

pu pv

puu + p puv

pvu pvv + p

pHu pHv

{'*-}n _

First, the volume integral in equation 2.29 may be expanded for the computational

Cell Centerll for

the Finite Volume

"_'aLOj_ I _ Oi, I

Edge I

Oi+1,1

Edge 2

Figure 2.4: Mesh for the Euler Flow Equations in the Physical Plane

control volume V,,3 of cell i, j as

d [ w dV- dw,,jV,,j
dt j v dt

where w w represents the average value of w in the cell, which may be approximated

by its value at a sample point (cf, Jameson and Baker [62]).
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Second, the surface integral over each computational control volume is decomposed

into constituent surface elements. For the case of a two-dimensional structured mesh

consisting of quadrilaterals there are four such constituent (k) edges. This gives

/.F. nd$= Erksk
k

where Sk are the surface-projected normals and the discrete fluxes Fk at the cell

faces are approximated by the average of the cell-centered values taken from the

corresponding two adjoining ceils. For example, the flux at the k -- 2 face shown in

Figure 2.4 is given by

1 1

F2 = _Fi+I,S + _F_,j.

Incorporating the above approximations, equation 2.29 is transformed into a first-order

ordinary differential equation for cell i, j with volume V,,j:

dt - V,j _FkSk • (2.30)
' k

To determine the explicit form of the summation _k FkSk it is beneficial to apply the

same general coordinate transformation as was applied to the potential equation. The

Cartesian flux components are now written as f and g with K and J defined as in

Section (2.4.1). Then by again introducing the contravariant velocity components,

V =J __

it is possible to rewrite equation (2.29) as

d

_x

8_ /'} -1{"/
V _

Fn( + (;i% d,_ = O.

V and S are unit volumes and areas respectively and W, F, and (; are given by

_4/_ _ g

P

pu

pv

pE

F=J

p l ,r

pUv + _p

pUH

, (; = .!

p P

pVu + ;_TY

a 77ppV'v+

pV lt
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It is now possible to rewrite (2.30) as

d_Zi,j 1 + 1

/1 ,+ l (;+j) + } (2.31)+ [_(i,;+1+ 2 ' ] 2 i,3-1J ,

where the (+/and (-t indicate that the evaluation of the mesh metric terms in F and

(')a"

(; occur at the appropriate cell faces. For example, F is a function of the metrics _

and _, which for F+l,a and F+ '-,,J are evaluated at i + I, J and for F,7/ and t.i_ 1,; are

evaluated at i - 1 j_ •

2.5.2 TIME-STEPPING

Equation (2.31) may be written as

dwi,j
- -Q(w,,j),

dt

where Q(w,,;) represents the collected residual of Euler fluxes that is balanced by the

rate of change of w within the cell. Thus when equation (2.30) is applied to each cell

in the computational domain, a system of first order ordinary differential equations

is obtained that must be integrated to steady state. In order to suppress odd-even

decoupling of the solution and possible overshoots around shock waves, equation (2.30)

must be augmented with artificial dissipation, giving

dw,,_ _
dt -_(wi,;) + 2_(w,,a). (2.32)

The form of _(ww) will be discussed later in section (2.5.3). By setting

_(w,o) = +Q(w,,j)- _(wi,j),

we have a system of equations of the form

dwi,_
dt + 7_(wia) = 0. (2.33)

Equation 2.33 is in a semi-discrete form, and it must be discretized in time for numeri-

cal computations. Various formulas for discretizing equations of type _ = -7_ (w,,;)
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are possible. Generating these schemes can be simplified if the solution of the differ-

ential equation is viewed as an integration. That is,

-"+' '<- ['_+'_(w,,j)<_.
W7'7 "_ WT'J Jtn

Because the form presented by equation (2.33) fits into a class of well investigated

equations, o.d.e's., a solution procedure may be patterned off existing schemes. One

such well investigated scheme, the Runge-Kutta multi-stage scheme, is chosen for this

research. A complete discussion of the various aspects and choices of Runge-Kutta

schemes applied to the time integration of the Euler equations is given by Jameson

[51, 66, 49, 50, 57].

In this work, a modified five-stage Runge-Kutta scheme was utilized, in which the

convective and dissipative parts are treated separately and in such a way as to increase

the stability region of the scheme beyond that obtained with a standard Runge-Kutta

scheme. It can be summarized as

7"1,

7"2_

WT 0 ---- 7l
i ,j wi ,j

}
w_=w_l { },,_ ,,_- _at.j. QIw[.)) - z_(,.,,r"-,,_)

7"3, w FJ
i ,.)

_4_
74

Wij

W_
I ,J

WT_+ 1
1,3

w_ _ 3:
1

: w:j - _Ati,j {Q(w_,,)- [.44V(w:3)+ .5673(w_)]}

{ ( [ ]= wTO,,3- "At,.7, Q(ww)-.56 .44D(w_j)+.56_D(w+,'_)+.44_D

iz Wi_,j +

7-4w,,))}

(2.34)

where the various weighting coefficients have been optimized through numerical in-

vestigations by Martinelli [80]. Pseudo-time-like stages in the scheme are denoted

ro - vs. Note that the Euler fluxes are evaluated at each stage while the dissipation
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fluxes are only evaluated at every other stage. Since the work incurred to evaluate

the dissipation fluxes is roughly equal to that of evaluating the Euler fluxes, there is

a considerable savings by evaluating the dissipation fluxes at only every other stage

provided that this does not hinder convergence. 1 Another advantage of this scheme is

that due to its damping of high frequency modes it is effective for use in conjunction

with multigrid techniques. 2

In order to determine the proper time step limit it is helpful to estimate the speed

and direction of wave propagation through each cell in the computational domain.

Consider the Euler equations, in equation 2.29, rewritten as

0w 0f(w) 0g(w)
-- + -- + - O, (2.35)
i)t Ox Oy

where

p _ p _tu + p p u r,
w=. _, f= , g= .

pv pvu pvv + p

pE pHu pHv

Expanding the spatial derivatives yields a non-conservative system of equations, which

are nonetheless useful for assessing properties of the previously introduced integral

and conservative differential formulations (cf. equations (2.2} and (2.3)):

1See section 2.5.3.

2See section 2.5.4.

0w 0w 0w = 0. (2.36)
O--t-+ A1 (w) _ + A2 (w) _)--_-
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The matrices A1 and A2 are the flux Jacobians, and can be explicitly written as

Of(w)
Al(w) -

Ow

0 1 0 0

w2 2 2

-_-_+ 2:__,; (3-7) _, (1-3,)_--_ (7-1)

to w w-a w--i 0
to! to I

2 2

_ z=A __i22A_
2

_7,_(w4 + p) + (1 - 7)-_ (1 - 7) _--5"_-"2_-y,_,__z

Og(w)
A2(w) -

0w

0 0 1 0

_ww w-a _ 0

t.bfl 2 2

w
(1 - 7),_-'_, (3 - 7) _-_, (7 - 1),!

-- 7) w---_ l(w4Tp)+(1--7)_ _

For a perfect gas, equation (2.36) is hyperbolic. Thus, wave-like solutions exist and

propagate in some direction defined by _, say. Although the exact propagation direction

of various waves may be difficult to determine, by making a simple approximation for

_, a reasonable time step scale can be derived. In this research _ is dimensional and
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assumed to be related to the area of a computational face such that

K 3- _ S j7

Ky --_ Sy

where S_ and Sy are components of the directed surface areas. With this approximation

it is then possible to derive a time step limit by noting that properties of the wave-like

solutions are governed by a linear combination of the flux Jacobians such that

= nzA 1 + s:_A2,

where

With this, the eigenvalues of the matrix .& are

/_i = _2 _ V'_,

A4 = - c II' ll

The spectral radius is defined as the largest eigenvalue of a given matrix. An

estimate of the spectral radius for discrete point i, j, given by o,,j is utilized as a

characteristic scaling quantity for both the artificial dissipation (cf., section 2.5.3) and

the time step. Q,,j is formed as the sum

Iv. l + I1 11

for the different coordinate directions. Finally, a conservative time scale can be set as

Vi,j
Ati,j -

Qi,;

The admissible time step limit is defined as Atlj = AV-za-, where A is the maxi-
, Q, ,)

mum Courant-Friedrich-Lewey (CFL) condition number allowed by the time stepping

scheme. The time step scale is used both to scale the dissipation--see section (2.5.3)---

and to set the time step limit used to integrate the solution. The CFL number does
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not scale the dissipation since this would mean the final solution would be dependent

upon the chosen time step. Note that At is a local time step limit and is scaled to

the local flow conditions as well as the cell size, thus rendering all transient solutions

non-physical.

2.5.3 ARTIFICIAL DISSIPATION

For the finite volume discretization of the Euler equations presented in section (2.5.1),

another mode of instability is also possible. When the time dependent term is dropped

and the scheme is expanded for a uniform Cartesian mesh, it reduces to simple central

differencing with a four point stencil (the center term is zero). This implies, at least

for this example, that two separate superimposed solutions can arise resembling a

checkerboard. This odd-even decoupling can be present irrespective of the smoothness

of the flow field. To obviate this type of difficulty, a weak dissipation term must be

added everywhere in the solution that effectively couples all the points. The best

manner in which artificial dissipation should be constructed for the Euler equations

remains an open issue. In this research, the dissipative residual 7:),,j for cell i, j is

formed from a blend of two separate dissipations (cf Jameson et al. [66, 51]), 7:),2j and

7)4,j •

T)2 4
'Z:)i,3= ,,3- 23,,3"

They are defined as 3

1 +d ,,

,/:)4,j 4 _ d 4 4 _ d 4= d,+½,j ,__j + dw+ _ ,,j__.

The terms on the right all have a similar form. For example,

2+ ¢2 (w,+l,_ - w w)d ½,_ = _+½,j

d4+½,j = c 4,,__._,J,(wi+2,j - 3w,+1,./ + 3w,,j - Wi-l,3) •

3The dissipation for the energy (the fourth entry in the w vector) is computed for pit rather than pE

since pH is the convected quantity. This also ensures that for homenergic flow (-_-T°Hand V H both zero), tt
is constant everywhere in the computed steady-state solution.
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The two different dissipation flux terms serve different roles in the solution stabiliza-

tion procedure. The first derivative dissipation flux, d 2, is used to damp oscillation

around large gradient regions such as shock waves, and it is suitably scaled by the

normalized second difference of the pressure. The third derivative dissipation flux, d 4,

is used to eliminate possible odd-even decoupling in smooth flow regions and can be

appropriately scaled by a scalar coefficient outside any large gradient regions. How-

ever, since 29_,3 can induce oscillations near shock waves and in smooth regions 292' Z,J

degrades solution accuracy, the two dissipation terms are blended to obtain optimum

results. The dissipation coefficients are therefore adapted to the flow and given for the

i,j+_ face by

,2 /t2V_,j+½ ....
' ,3 - ,3]

(r ])= max 0,[ , z'3+½ '_

with the coefficients for the other faces constructed similarly. The 1,_.j term acts as a

limiter for 292 and is defined independently for each coordinate direction as
z,3

= __P_+z,J- 2p_,¢ + p_-lj in the i direction
1'i,j [pi+ 1.3_ 2pi,3 + Pi-1,3

t_ij = Pi,j+l - 2pi,j + PW-1 in the j direction.
ip,,j+---_Yk2pi,j + P,,3-1

On a regular Cartesian mesh with E2 and E4 equal to unity, 272,,j.and 294j represent

the undivided Laplacian and bi-harmonic of w. The factors E2 and c4 are introduced to

scale the artificial dissipation properly as well as limit its effects. Note that V is the

volume of the computational cell, and 1 _,at,,, - _ is the quotient of the characteristic

scaling quantity (i.e., spectral radius) to this volume. Terms IL2 and #4 represent

dimensionless coefficients which may be selected by the user.

Dimensional analysis of 292j and 29_,j offers insight into how these quantities scale

in comparison with the Euler residual Qi,j as the mesh spacing is decreased. Denoting

L as length and T as time, _°' has dimensions of (_.)IT where the term in parentheses

represents a characteristic speed. The dimensions of the representative undivided
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Laplacian and bi-harmonic difference operators may be written as L 2 (_) and L4 (_)

respectively. It follows that the dimensions of the dissipation coefficients with respect

to divided difference operators would be the product of a speed with a length or a

length cubed. Defining ]_ to be a characteristic length of a computational control

volume, ultimately :D2j will scale as O(]_) and T_4 will scale as O(]_ 3 ). However the
z_J

coefficient E_,j+_ will also scale as O(]_ 2 ) in smooth regions of the flow. Thus the entire

artificial diffusion will scale as O (]_a) in smooth regions of the flow but reverts to O( Jr)

around discontinuities.

2.5.4 CONVERGENCE ACCELERATION

Like the basic scheme for the potential flow equation (see Sections 2.4.1-2.4.4), the

scheme discussed thus far for the Euler equations in Sections 2.5.1-2.5.3 converges at

a less than desirable rate. The scheme can be accelerated by using specific techniques

suited to this task. Three such techniques are implemented for the Euler formulation

that significantly increase the convergence rate of the numerical procedure.

ENTHALPY DAMPING

One device for accelerating the convergence of the Euler formulation is the augmen-

tation of the governing equations with a term that is proportional to the difference

between the total enthalpy, H, and its free stream value H_. For steady state, invis-

cid and adiabatic flows with constant uniform free stream, H -- H<× throughout the

domain. Thus a forcing term proportional to H - H_(, will not alter the steady state

solution so long as the discretization of the Euler fluxes and implementation of the

artificial dissipation preserves conservation of total enthalpy. A check of the finite vol-

ume formulation in section (2.5.1) and the dissipation scheme in section (2.5.3) shows

that conservation of H is indeed maintained in the present method. The augmented

governing equations are thus written in differential form as

Op
O---t+ _7.pv + 5p(H - H_(_) = 0 (2.37a)
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Opv

Ot
-- + V.(pvv)+ Vp+ &pv(H - Ha-,) = 0 (2.37b)

Op__ffE+ V.pHv + dpE(H - Ho_) = 0, (2.37c)
Ot

where 5 is a user-provided input to control the magnitude of the enthalpy damping. A

rigorous presentation and justification of adding these terms to accelerate the conver-

gence has been given by Jameson et al. [49, 66]. Here, it is sufficient to state that the

additional terms act to damp transients and have proven to be efficient in accelerating

convergence.

IMPLICIT RESIDUAL SMOOTHING

Implicit residual smoothing can significantly increase the CFL number at which the

scheme remains stable by efficiently increasing the stencil of support for the scheme.

In the potential flow formulation, the equivalent of residual smoothing was built into

the iteration scheme through the alternating direction algorithm. For the explicit

multistage time-stepping scheme used for the Euler equations, residual smoothing is

applied in product form to reduce computational cost and can be written

(1 - _i_2)(1 - _jh_)7_i,j = 7_,;,

where _i and _j control the level of smoothing, and 7_,,j is the updated value of the

residual that is obtained by solving the equation implicitly in each coordinate direction

in series. Each scalar component of w can be solved for independently by the use of a

eomputationally inexpensive tridiagonal solver. This smoothing can work concurrently

and efficiently with the multistage scheme by application at every other stage. A

rigorous discussion of the stability character and overall benefit of this acceleration

device is provided by Jameson and Baker in [52, 60].

MULTIGRID ACCELERATION

The third technique of accelerating the convergence of the Euler formulation used in

this research is the multigrid method. The advantages of using a multigrid method

were discussed in Section 2.4.5 where it was applied to the potential flow equation.
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Here it is applied to the Euler equations using a similar technique. As for the potential

flow equation, a coarser mesh is introduced by eliminating every other point in a fine

mesh. The full multistage time stepping scheme is used to drive the solution on each

mesh.

Once a full time step is calculated on the finest mesh in the sequence, the multigrid

cycle starts by transferring both the residuals and the flow variables to the next coarser

mesh. The values of the flow variables are transferred conservatively with

_I v W'+÷ 1 )f s (2.38)

where it is noted that the coarse mesh flow variables w_ have yet to be updated and

thus are still at state 7_+.For two dimensions the sums extend over the four fine mesh

cells that are agglomerated in order to create the single coarse cell. The corresponding

residuals are transferred with the simple summation

(2.39)

where _S (ws) stands for the fine mesh residual calculated on the fine mesh and

7¢c (wf) is the collected fine mesh residual on the coarse mesh. Now a forcing function

is defined as

(2.40)

where R_ (w_ +) is the residual calculated on the coarse mesh with the collected w from

the fine mesh. To update the solution on a coarser mesh the multistage time stepping

scheme is reformulated as
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?t

W? = W c

1I 11_:2 w[ _ = w?-_At 7_(w:')+T'_

,,:3 w 2 = w; °- gAt "R-c(w,r z) +T'_

_,=4 w; 4 = w_-_At 7_(wy) +T'_

.:5 w2 :

w'/+1 : wT, (2.41)

where 7_ (w_ -r4 ) are calculated in the same manner as that for the five stage scheme

in equation (2.34). In the first stage on the coarse mesh, the residual calculated on

the coarse mesh is replaced by the residual collected from the fine mesh, with the

result that the evolution of the solution on the coarse mesh is driven by the residual on

the fine mesh. The multigrid cycle continues by repeating the collection and the time

stepping procedures of equations (2.38-2.41) on each successive coarser mesh. Once

a time step has been completed on the coarsest mesh in the sequence, the correction

calculated on each mesh is passed back to the next finer mesh in succession by bilinear

interpolation. Because the solution on each coarser mesh is driven by the residuals

on the finest mesh, the final solution on the finest mesh is independent of the solution

details on any of the coarser meshes. A more complete treatment of the implementation

and convergence of multigrid acceleration for multistage time stepping of the Euler

equations is given in [50, 61, 51,521.
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2.5.5 BOUNDARY CONDITIONS

Like the potential flow solution method, appropriate conditions must be specified on

the boundaries of the computational domain. For the computational domains used for

the solution of the Euler equations, two classes of boundary conditions are necessary:

solid walls, and far fields.

SOLID SURFACE BOUNDARIES

A oJJ u _oi.io
0 0 t o

Olto_t Coil C_|orl

Below ftle Surlece

Figure 2.5: Mesh for the Euler Equation at the Airfoil Surface in the Computational
Plane

Solid boundaries must be modeled by a no-penetration condition that still permits

slip. For arbitrary meshes, this is most conveniently done by first transforming the

differential form of the governing equations to be coincident with the body-fitted mesh

coordinates _ and '/- Then ifa constant ,j = 0 fits the surface, the Euler fluxes in (2.35)

can be transformed to give

F = y,_f- x,jg and G = x_g - y_f,
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where F and (; are the fluxes tangential and normal to the surface respectively. Figure

2.5 shows that at the surface all convective terms must be dropped from the definition

of (;, giving

(; = x_p - y_p.

This formulation has the advantage that most of the flow field quantities never have

to be prescribed at the boundary. The only information needed is an estimate for the

pressure at the wall. The value of p, for the cell centers immediately off the surface

can be estimated from the interior points by calculating the pressure gradient due to

curvature of the streamlines as proposed by Rizzi [98]:

(x_ + y_ )p,, = (x_ x, + y_ y,_)p_ + p( y,,u - x,_ _,)( vx_ - uy_ ). (2.42)

With this estimate it is then possible to extrapolate the value of p at the wall.

FAR FIELD BOUNDARIES

For the far field, a characteristics-based boundary condition is imposed such that out-

going waves are extrapolated from the interior while incoming waves are specified in a

manner consistent with conditions imposed by the free stream. In order to accomplish

this, Riemann invariants are introduced which correspond to the one-dimensional

flow normal to the boundary. Fixed and extrapolated Riemann invariants may then

be defined for the incoming and outgoing characteristics respectively as,

2c_ 2c_
R_, = v_,.n - -- R_ = v_.n+--

_-1' 7-1

where _ refers to free stream values and < refers to those extrapolated from the interior

of the computational domain. These incoming and outgoing Riemann invariants may

then be added and subtracted to give,

1
v_,.n = _ (R_ + R,_), (RE-- R_,)<' - 4

where a represents the actual quantity at the boundary. For outflow boundaries the

tangential component of the velocity is taken as the extrapolated values giving

v_ = v,'nt + va-n,
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whereas for inflow boundaries, it is taken from the free stream values giving

V,t ---- voo'n t + va'rl.

Here nt is the unit normal in the tangential direction to the outer boundary. The

scheme is completed by extrapolating the entropy at an outflow boundary or setting it

equal to the free stream value at an inflow boundary. This choice and the definition

of c, together fixes the values of density, energy and pressure at the boundary. For a

complete treatment, see [60].
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Chapter 3

NUMERICAL OPTIMIZATION METHODS

The use of numerical optimization in aerodynamic shape design is not unique to this

research as has been discussed in Chapter 1. However, the choice of which numerical

optimization algorithm to employ is of considerable importance. The optimization al-

gorithm should be both robust and efficient. The choice here is limited to those based

on gradient information since the primary advantage of using control theory is to pro-

vide inexpensive gradient information. Even so, this restriction should not be viewed

as excessive, since non-gradient based methods, such as genetic algorithms [16], are

typically expensive alternatives because they require a very large number of objective

function evaluations. Gradient-based numerical optimization methods are based on

the assumption that the cost function depends smoothly on the design variables. They

can be classified into two distinct categories: constrained and unconstrained methods.

Both of these methods require the gradient of the objective function with respect to

the design variables. In addition, constrained methods typically also require the gra-

client of the constraint functions which must be satisfied during the design process. In

theory, it is possible to use control theory to provide this additional constraint gradi-

ent information. If the adjoint variable formulation is used, and assuming that the

constraints refer to quantities that involve flow variables, such as pitching moment,

C,,_, this method amounts to obtaining the solution to a separate adjoint equation for

each constraint equation that must be satisfied. If the constraints are independent of

flow field variables, such as geometric constraints, no additional calculations may be

needed since the constraint gradients can be obtained by direct analysis.

For the scope of this research, it is assumed that all problems will contain a single,
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possibly composite, objective function, with no additional flow variable dependent

constraints. Thus, if an aerodynamic constraint such as ('m is necessary, it must

be posed as a penalty constraint which is added directly to the objective function.

While this approach may have limitations in the practical environment, it is still more

than adequate to demonstrate the strength of control theory based optimization. By

presupposing that the problem of interest can be cast in a single objective function,

with at most penalty constraints, it is possible to use an unconstrained numerical

optimization algorithm. It is accepted that the more high order information provided

to a gradient based numerical optimization algorithm, without a significant increase

in computational cost, the greater the likelihood of success. 1 Here, a summary of

existing methods is given with special focus on the method employed in this research.

Numerical optimization terminology used in this thesis is as follows: The objective

function, I, is the scalar figure of merit used to judge whether or not one design is better

than another. It is also equivalent to the cost function defined from the controls point

of view. The design variables, u, form a vector set of independent parameters which

affect the design. The design space is that space spanned by the value of the objective

function with respect to the variation of the design variables. For example, where the

objective function to be minimized has only two independent design variables (Ul and

u2), the design space is then the surface defined by the value of the objective function,

l(ul, u2), for all allowable combinations of ul and u2.

The reliability of all gradient methods depends on the presumption that the design

space is smooth. Smoothness implies that the gradient and possibly the higher-order

derivatives of the objective function with respect to the design variables are reasonably

definable and continuous. The objective function should be carefully defined to ensure

that this is the case. For example, in the presence of shock waves integrated quantities

such as the drag depend continuously on the shape because the shock location and

strength vary continuously, although the local pressure in the vicinity of the shock is

subject to a sudden change as the shock moves. If a quadratic design procedure is

1For a detailed description of the various optimization algorithms available and their application to

aerodynamic design, see Gill, Murray and Wright [31] and Reuther [90] respectively.
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employed, an additional condition that the design space is unimodal should also be

satisfied. Unimodal functions are those that experience one extremum in the design

space and not several local extrema. Generally, unimodal functions are quadratic

functions, or are at least strongly approximated by quadratic functions near their

extremum. If a problem displays discontinuous (i.e. non-smooth), highly nonlinear, or

extensively multi-modal properties in the design space, then a non-gradient method

may be the best choice to find the global extremum. If, on the other hand, only a local

extremum is sought, and so long as the design space is smooth, then even a finite-

difference based gradient method should be more efficient than a genetic algorithm.

3.1 GENERAL UNCONSTRAINED GRADIENT-BASED ALGORITHM

Gradient-based methods are constructed from a simple Taylor series expansion of the

objective function about a point subject to the design variables:

l(u + _p) = /(u) q- A_(u)Tp + l_2pT_-((u)p + ()(,k 3) q- ... (3.1_

where ¢}(u) is the gradient vector, 7-/(u ) represents the matrix of partial second deriva-

tives (the Hessian matrix), p represents the search direction, and A represents the

stepsize. These gradient-based algorithms have in common not only a Taylor series

foundation, but also a basic algorithm structure:

General Unconstrained Gradient-Based Numerical Optimization

1. Calculate the objective function and the gradient at the current point in the

design space.

2. Calculate the search direction based in part on the objective function and gradient

information.

3. Determine the optimum or near optimum step length along the search direction.

4. Check for convergence and if necessary return to step (1).

Although one variation of this approach effectively reverses the order and combines

step (2) and (3) (thrust region methods), the basic iterative nature of the algorithm
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remains. The presentation of this chapter follows the steps of this general algorithm.

It is presumed that the flow solutions and adjoint solutions that are required for step

(1) are available. Sections (3.2 - 3.5) treat steps (2) and section (3.6) addresses step (3).

3.2 STEEPEST DESCENT

The simplest means of exploiting gradient information in numerical optimization is

the steepest descent algorithm. The essence of the technique is to use the direction

which has the steepest negative gradient as an estimate for the direction in which

the minimum lies. It is assumed that the optimization problem is posed such that a

minimum rather than a maximum is sought. This assumption creates no loss of gen-

erality since any maximization problem is easily re-posed as a minimization problem.

Provided that the initial objective function value and the gradient are available, the

minimum is then assumed to lie in the search direction p = - I'(u) = -{7. One virtue of

the steepest descent method is the trivial cost of calculating the search direction. Thus

even as the degree of u (the number of design variables) increases, the cost of calcu-

lating p remains insignificant; this is not necessarily true for the high order methods

discussed later. The next step involves searching in this direction for a minimum. For

problems where the design space is perfectly quadratic, that is where 7_ is constant

and positive definite and the higher order terms can be neglected, the stepsize to the

minimum along the steepest descent direction can be directly calculated. For this case,

the goal is to minimize, with respect to A,

l(u + _p) = l(u) + AG(u)Tp. (3.2)

One choice of p which ensures a reduction in I provided ,_ is sufficiently small and

positive, is p = -G. This direction guarantees the greatest reduction in / for a small

constant A. With the steepest descent direction chosen as the search direction, a one-

parameter search in ,_ may be performed in order to find a minimum along p. In many

instances, a separate algorithm is used to determine an appropriate i. A discussion of

such an algorithm is provided in Section (3.6). However for specific functional forms

of 1, _ can be obtained by alternative means, as illustrated next.
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Suppose that the objective function is of the quadratic form

1
l(u) = _uTAu - bTu + c, (3.3)

where A is a symmetric positive definite matrix. It can readily be shown that mini-

mizing this function is equivalent to solving the linear algebra problem

Au = b. (3.4)

An important property of the quadratic form (3.3) is that it forms a paraboloid that is

concave up in every direction due to the positive definiteness of A. Thus the function

is ensured to be unimodal. For this particular form of the objective function, much

insight into the steepest descent procedure can be gained. The search direction is

given by

pi = -_7, = b- Aui.

It is desired to find the minimum along p with respect to _. This is given by solving

dli+l dui+lO= (l(u)i+l) - du,+l dX

_T dui+l

= _i+1 -"_

-T -
= -Gi+l_i

= (b -- Au_+I)T G,

= (b - A (ui - _iGi))TGi

= (b- Aui)TG, + )_i(AGi)TGi

_, - G_rAG ,

giving an explicit formula for _ in terms of the current gradient.

This derivation shows that minimizing the function along pi is equivalent to finding

the point along pi such that the new gradient is orthogonal to the last, since GT+IG, =

0. If it happens that the paraboloid defined by l(u) is stretched along an axis, the

convergence of the steepest descent algorithm will become poor; see Figure (3.1).
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The poor behavior results from the fact that each new search direction is orthogonal

to the last, and hence a fine-toothed zig-zag path must be followed to traverse the

base of any "canyon" present in the design space. While progress toward a global

minimum continues, the rate of convergence can become extremely dilatory due to

the infinitesimal steps taken along each successive pi. This degenerate behavior of

the steepest descent algorithm is unfortunately not confined to quadratic objective

functions, but instead typifies its behavior on more general functions. Clearly, a more

robust iterative algorithm should be feasible from knowledge of the gradient and the

objective function.

Map of the _ign Sl:_Ce for • parab•lold with two vutsbl_.

Contour llnew of conet•m _lu4w of fh• ob}ecltve lunctlon.

True Minimum

Bell•vJor of the St,_p_wt D_mcent A_loritnm

StIriing point for the demlgn Algorithm

Figure 3.1: Performance of the Steepest Descent Method on a Paraboloid

3.3 CONJUGATE GRADIENT

The slow convergence behavior of the steepest descent algorithm can be mitigated to

some extent by the use of the conjugate gradient algorithm. Following the development

of steepest descent, it is again initially assumed that the objective function is of the

form of equation (3.3). Motivated by the fact that the steepest descent algorithm
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tends to repeat previous search directions, a set of ii search directions are defined that

span the design space 2. Thus, pi is no longer defined by the negative gradient but is

chosen to be linearly independent of all previous searches. Thus each iteration should

eliminate one component from the design space and after 7_iterations the minimum

should be obtained. For this approach to work, pi must satisfy the property that

pfApi = 0 for j # i, (3.5)

which is equivalent to saying that they are conjugate with respect to A. Given that a

set of conjugate search directions exist, it is necessary to find the minimum along each

such direction just as in the steepest descent algorithm. The directional derivative

along pi is set to zero, giving

d
dA (1 (u)i+l)

-,T du_+l

= _i+1 d,_ =0

T
= _i+lP_

= - (b- Aui+l) Tpi

= - (b- ,4 (u, + Aipz))g P,

= -(b- Aui) T pi + _i(Api) T p,

Ai = !$Tpi (3.6)
p TAp ' •

Thus it is possible to construct an iterative search algorithm that systematically uses

elements of the basis vector pi which spans the design space using the choice of Ai

prescribed by (3.6).

To see that the procedure will indeed converge to the minimum, it is convenient to

introduce the error term

ei = ui -- Us

where us is the location of the desired minimum. Now since pi is defined to span the

_Note that n here is still the number of design variables
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space ui we can express the initial error eo as

eo = _ 6ip,, (3.7)
i=0

with 6, being the proper stepsize to eliminate the error component el. Multiplying

T(3.7) by Pk A, where k is between 0 and n - 1, and using the conjugacy condition (3.5)

gives

Also,

T
pkAeo = _ 6ip[.Api

i=O

= 6kpTApk

pT Aeo

pT Apkk

pTA (eo + ____-(_ /_iPJ)

p_Apk
(3.8)

eo = uo - us

el = Ul -- Us

= eo + Ul -- u0

ei+l = ei + _iPi

e/+l

Substituting (3.9) into (3.8) gives

and since

i

= eo + Z Ajpj.

3=0

T
Pk Aek

6k - pT Ap k ,

Au, - b

(3.9)

= Aui-b-(Aus-b)

= A(ui - us)

----- Ae_
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6k becomes

pkr ;k
6k - pT Ap k.

Thus 5_ = -Ai, which means that the stepsizes A defined by (3.6) are precisely the

right choices such that in n steps ei is eliminated. Mathematically,

ei

i-1

= e0 -]- Z AJP;

3_-0

.-1 _-1

 JpJ- Z  JpJ
j=O j=o

= _ 6_pj (3.10)
j=i

giving e,-_ = 0. Thus if a set of conjugate vectors which span the design space are

defined, it is possible to converge on the optimum in at most _ steps.

One method of obtaining an A-orthogonal set of search directions is by the conjugate

Gram-Schmidt process. Start with any non-A-orthogonal set of vectors which spans

the design space, say u,. Form an A-orthogonal basis pi by first setting po = uo. The

remaining terms for i > 0 are formed by subtracting out components from the starting

u, that are not A-orthogonal to previous p, components; that is,

p, = u, + _ f_,,kPk
k=0

(3.11)

where fli.k for i > k are determined by multiplying by pfA, giving

i-1

pfAp, pTAui + E r= f:li,k p j Apk
k=O

0 : pTAui+fli,jpTApj fori >j

pf Au,

_"J = -pf Ap.l"
(3.12)

Since the cost of forming p t directly from equations (3.11) and (3.12) is proportional to

O( 7_a ), a more efficient method becomes necessary. Returning to (3.10) we write,

ei = Z/_J P:
j=_
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pTAei = Z6jpTApj

j=i

T -_

Pk_/_ = 0 fori> k.

This means that, by definition, Gi is orthogonal to all previous conjugate search di-

rections.

get

and

Now by choosing our original basis as the set of gradients, ui = -.6,, we

pT A9 ik

/4i, k = + pTAp k '

_i+1 = Aei+l

= A (ei + ,kip,)

= Gi + AiApi

",T _ ¢_Tc -Ai_f Api

-T
-_i Api -

1 T-, 1 -,T-,
+

Thus

-p_ AGi - 1 ,.7" ,.. 1 T .
Ak_'k+l_', + _gk ¢ii.

[ t?T t _.
1 [ Wk+l_

Di,k = _kk \pTApk

and since i > k, _ is defined as

pTApk) "

1 _,r_, for k = i- 1

0 fork< i-1

Thus, the k index may be dropped and (3.11) becomes

(3.13)

Pl = u, + _lip,_ 1.

_i may be simplified further, using (3.6) to give

_T(L
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Finally, because

P,

i-1

= ui -[- E _i,kPk

k=0

i-1

_/i Pi =

k=O

= GTu,

= -919i.

Therefore,
GT¢.,
i --, (3.14)

3_- Gr G 1
i-1 -

Instead of requiring 0(7_ a) operations to generate a conjugate set of search directions,

by using the gradients as the search directions it is possible to construct them as the

algorithm proceeds at the cost of a few vector products. The entire conjugate gradient

algorithm can be written as follows:

set po = -Go

then for

Ui+l

i=0, it- 1 repeat:

Grn

pT Api

= Ui + AiPi

_i+1 = G, + AiAp,

"T

f_/+l = T-

Pi+l = G,+I -t- ,Oi+lP,.

By using the conjugate gradient algorithm it is possible to minimize the quadratic

function of equation (3.3), which is equivalent to solving (3.4). It was for this ap-

plication that the algorithm was first developed. However, it can also be applied to

more general functions. Used as a general optimization algorithm, where gradient

and function information are available but the Hessian is not, the conjugate gradient
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algorithm can be written as:

set po = -Go

then for i = 0, st - 1 repeat: (3.15)

find Ai

Ui+I -----

that minimizes 1 (u, + Aip_)

ui + kipi

calculate G,+I

_i+l

P,+l ---- Gi+I Jr _i+IPz. (3.16)

In this case, the cost of evaluating subsequent search directions, p, has risen from

fi operations to 3fi operations. Even from the stand-point of treating a very large

number of design variables, this remains an insignificant cost. However, this point

must be stressed since the focus of this research is to allow essentially an unlimited

number of design variables. Just as in the steepest descent algorithm, the calculation

of Ai becomes a one-dimensional search problem whose solution is discussed in Section

(3.6). When the algorithm is used for functions that cannot be characterized by equa-

tion (3.3), the proof of convergence in it iterations no longer holds. As a result, care

must be taken when employing (3.16), especially since it has a tendency to become

stuck in regions of the design space where a well defined positive gradient still exists.

This behavior can be understood by recalling that throughout the derivation of the al-

gorithm two important assumptions were made. First, the problem was characterized

by having a constant symmetric positive definite Hessian; and secondly, the current

search direction was required to be conjugate to all preceding search directions. For

quadratic problems, the second assumption results in never having to repeat a line

search along an old direction. However, for a general problem it is often necessary

to repeat search directions. Therefore, the tendency of (3.16) to eliminate previous

search directions can actually penalize convergence. Furthermore, the determination
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of ii, and hence the next search direction, hinged on the first assumption, and while

the Hessian may be taken to be symmetric even in a general problem, it cannot be

assumed to be constant or have positive eigenvalues. A rather crude fix, often used

to keep the method from stalling, is to restart the algorithm after a given number of

iterations < ¢_or when convergence becomes excessively slow. In practice the conju-

gate gradient method employed on general problems displays greater efficiency than

steepest descent but is far from ideal?

3.4 NEWTON'S METHOD

By extending the Taylor series expansion to include the second order term,

1 T
l (Ui + Si) = l (Ui) "4- _(Ui) T Si + _S i _-_(Ui) Si,

it is possible to use Newton's method:

dl
-- = 0 = _(u,)+ _(uOs,.
dsi

Thus

(3.17)

-1-
si = -_i _/,, (3.18)

where s, = _,pi from previous definitions. Therefore, if the Hessian and the gradient

are available throughout the design space, si not only gives the direction but also the

step length towards the minimum. For the quadratic problem of equation (3.3), we

obtain

Gi = Aui - b

7-li = A

s, = - A -l ( Aui - b)

= Us -- UZ.

aAs an auxiliary note, the conjugate gradient method of solving symmetric positive definite matrices
has been extended by many authors to treat more general non-symmetric systems, notably [99]. And

while the method has been studied here in the context of the design problem, such methods have also

been routinely applied to the flow analysis [7, 12].
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In one step the minimum is found for the quadratic. For more general problems,

the process can be repeated in order to converge to the minimum. The advantage of

switching to Newton's method for these more general problems (provided that G_ and

?-/_ are available and inexpensive) is that it should in theory accelerate convergence

and hence reduce computational costs. If Newton's method is applied successfully, the

convergence for general design problems would be quadratic as opposed to linear for the

steepest descent method and superlinear for the conjugate gradient method. Further,

since the solution of the quadratic problem (3.18) prescribes the step length as well as

the search direction, a univariate line search with its additional function evaluations is

not required. Unfortunately, and unlike the steepest descent method, the direction and

step length prescribed by s_ for Newton's method do not guarantee a reduction in the

objective function. A helpful improvement for highly nonlinear objective functions is

to use a safeguarded Newton's method whereby s, is used simply as a search direction

p_ with a scalar multiplier _, being determined by a one-dimensional search (see

Section 3.6). This modification which is often necessary for general problems has the

the disadvantage of both dropping the possible convergence rate from quadratic to

superlinear and adding the computational cost of function evaluations in univariate

searches. Even with this adjustment, Newton's method proves impractical in many

cases.

The most significant difficulty of using numerical optimization for aerodynamic

shape design is that it can be very expensive. For the steepest descent and conjugate

gradient algorithms explored earlier, both the objective function evaluation and the

gradient of the design space are needed. As Chapter I explained, if finite differences

are used to calculate the gradient information, O(7_) flow field evaluations are required

per design iteration [90]. Because of the prohibitive cost of these evaluations, this

research seeks to find a means of reducing the cost of gradient information. For

Newton's method, in addition to the objective function and the gradient, the Hessian

is also required. If finite differences were used to calculate the Hessian, order O(n 2/2)

flow solutions would be required per design iteration. Of course control theory could

be used to reduce the cost of the Hessian evaluation in a similar manner to the way
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it is used here to reduce the cost of the gradient evaluation. Unfortunately, even with

the use of control theory the cost of using the full Newton's method is still prohibitive.

While control theory can reduce the cost of the gradient from O(i_) to 0(2) flow field

evaluations, the cost of the Hessian can only be reduced from O ( 7_2/2) to O (7_+ 2 ), which

implies that O(7_) flow field evaluations would still be needed per design iteration.

Furthermore, it is questionable whether the use of full Newton information should be

used, even if the computational cost of obtaining the Hessian were not proportional to

the number of design variables. This results from the fact that calculating p requires

O(7__) operations per design iteration, as is evident in equation (3.18). Thus as 7_

becomes truly large, the operational count to obtain the search direction will eventually

surpass that of obtaining both the gradient and the Hessian. Appendix A1 explains

the methodology for using control theory to obtain cheap Hessian information. For

this research all calculations will explore the reduction in the computational costs of

the gradient only. Without an attempt to reduce the cost of the Hessian, Newton's

method is impractical for aerodynamic optimization using CFD.

3.5 QUASI-NEWTON METHOD

The advantage of using Newton's method does not become entirely nullified by the

impracticality of obtaining direct Hessian information. It is possible to obtain approx-

imations to the Hessian matrix by using the available gradient information. Let the

gradient be expanded about a point with a Taylor series, giving

(us + Aipi) = {_(ui)+ Ai_/(u_)pi +---. (3.19)

Curvature information along the search direction pi can thus be obtained.

The idea of the quasi-Newton method is to build up better approximations to the

Hessian matrix systematically as the iterations proceed. It follows that an approxi-

mate Hessian can be defined as

where H, is an update matrix. The various forms of quasi-Newton methods in existence
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differ in the specification of this update matrix. The first condition that all of these

techniques share in common is the quasi-Newton update condition, which can be stated

as

(Ui+l) = G(ui) + A,_ip,,

or

_i+lSi ---- y,

:

1 (y,-
ri -- zTs{

1

lAi - zTsi (yi- 7_is,)z T
(3.20)

with zi still remaining arbitrary. A point that will become useful later is the fact that,

without violating the quasi-Newton condition, the expression above may be augmented

with an additional term },_T, where }t is arbitrary and _.t is orthogonal to s,. Thus, lA_

can be set to,

/At = riz T + l'iZ T,

where it is obvious that the last term is annihilated by orthogonality to satisfy the

quasi-Newton condition.

Fortunately, there is another condition that should be met by the approximate

Hessian, namely that it, like the true Hessian, should be symmetric. Returning to

where si = A,p, and y, = G (ut+l) - {_(u/) are known. It is noted that the quasi-Newton

condition is a necessary approximation to the Taylor series expansion (3.19) arising

from the need to lag information. The condition is simply a first order finite difference

approximation of the change in the gradient along the search direction. Satisfying this

condition alone does not create a unique update matrix. For example, if we choose an

update of the form

IAi = rtz T

where r, and z, are some vectors, the quasi-Newton direction becomes
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equation (3.20), the easiest way to impose symmetry is by choosing ri to be a multiple

of zi giving the unique rank one update:

yi - 7_isi) r si

However, this is not the only way to construct a symmetric update to the approximate

Hessian. If we choose the update rule to follow

1 (_+rizT)+ +

1 T T

=

symmetry of _,+1 is ensured. This rule results in the rank two update formula:

By choosing various zi not orthogonal to s, it is possible to calculate a wide variety of

possible updates that satisfy both symmetry and the quasi-Newton condition. Impor-

tant examples are: the Powell-Symmetric-Broyden (PSB) update in which z, = s,, and

the Davidon-Fletcher-Powell (DFP) update with z, -- yi, which results in

1 (y/y,) 1 (_.siy:r) 1 (yisT.Hi) +__(yiy:r )
lgi- yrs ' yrs i yrs i (yrsi)2 •

This may be rewritten as

where

Hi - yTs _ 1 (7_,s,s:_,)

and it can be verified that _i is orthogonal to s,. Thus, a family of related rank two

methods which all satisfy the quasi-Newton condition can be defined by multiplying

the second term by a constant. The DFP method happens to be the one in which

this constant is chosen as unity. It is generally accepted that the best choice for this

constant is actually zero, with the resulting update known as the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) update and given by

-1 1
lli= 7"- _isis_i + _____yiyr.

s i _is, - "yts_ -
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For this research, the BFGS quasi-Newton algorithm will be used exclusively. While

many other choices are available, the BFGS quasi-Newton method remains the stan-

dard by which other gradient-based methods are measured. There is no intent here

to select the best numerical optimization procedure since the research focuses upon

obtaining inexpensive gradient information.

An important implementational issue in using quasi-Newton procedures is where

the updates should be applied. As presented thus far, the Hessian itself can be directly

updated. However, this is not the only choice; some schemes update the inverse of

the approximate Hessian while others update the Cholesky factors of the Hessian.

Updating the Cholesky factors is beneficial for two reasons. First, calculating the

search direction according to (3.18) is considerably cheaper if the Cholesky factors are

used as opposed to the Hessian itself. Calculating the updates to the Cholesky factors

costs no more than updating the Hessian itself. Secondly, it is easy to correct the

updates to the Cholesky factors such that they result in positive definiteness of 7_.

Note that the BFGS update may be written as

lgi = _/17.i _T + 72YiY_

where "h and 72 are scalars and z, = His,. The point is that lg_ is the sum of two rank

one updates.

Developing this further, assume that instead of storing _i its Cholesky factors are

stored; that is

where _i is a lower unit triangular matrix and _i is a diagonal matrix. So long as

_i is symmetric and positive definite, this factorization is possible and yields positive

elements in _,. As mentioned earlier, by storing £_ and i5, the cost of calculating the

quasi-Newton search direction by solving

7"_i Si ---- --_i

t i St -_ -- i

for si is reduced since only back substitution with O( 7_2 ) operations is required. Now,
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since the previous _ and/5 exist at the new iteration, it remains to obtain the low rank

updates of these factors:

-- + +  2y,y,

- - -T _i/5,/_T + 71ziz T + 72yiyT£i+1I),+1£i+ 1 =

---- _i (/5i -[- _lZi _T q- _2_r/_ rT) _T

where z_ and jq are the solutions of the triangular systems,

£iii = zi

_9i = yi.

Next it follows by construction that

without any work due to the special form of the rank one updates. Further, it turns

out that _, is very sparse and has a fixed structure. The result is that

£i+1_i+1£i+1 =

where/_,+1 =/_i_i and _:)i+1 = f)i. As a last point, since retaining all positive elements

in/5 ensures that the approximate Hessian is positive definite, and hence the solution

of the quasi-Newton search direction remains non-singular, a way to safeguard the

design procedure can be incorporated by forcing all the terms of the new /5,+1 to

remain positive.

The entire quasi-Newton procedure with BFGS updates of the Cholesky factors can

now be written as

set/_1 = 0 and/51 = I

calculate G1
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Pl = --_i

then for i> 0 repeat:

find Ai that minimizes I (ui +Aip/)

Ui+l : Ui q- ,_iP,

calculate G,+I

si = AiPi

Y, = _i+l - _,

1 1

71 = sTy, and 72- yTs _

calculate i, and _'i from

assign £, and/5 ifrom

9,+_i_,_,r +_2y,yf = _v,_T

z_i+1 = _i and bi+l= _,

solvefor Pi+I by back substitutionof

/£,+1 IDa+ 1£i+1P,+1 --Gi+I •

(3.21)

Note that even though the last expression in (3.21) should actually solve for s,+l

instead of p_+l the latter is used so that the univariate line search can be used to

safeguard the iteration process. However, even with its improvements in efficiency,
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this form of the quasi-Newton method must be used cautiously within the framework

of optimization in the presence of inexpensive gradients. By applying updates to the

Cholesky factors, the operational count of calculating the search direction drops from

O(_:_) to O (_2). But even this operational count can become unmanageably expensive

from the standpoint of storage and extra CPU time for very large 7_.

It is reasonable to conjecture that for a three-dimensional problem with a mesh of

2

i_ points an estimate of the number of surface points is given by O( i_ ). Further, the

design must be limited to having at most a similar number of design variables. Thus

the cost of calculating the search direction from the Cholesky factors for the maximum

4

number of design variables can be estimated as O(i_) operations. Similarly, the

storage of the factored Hessian, for this worst case, can be estimated as O(i_ ). The

result is that, both in terms of time and storage, simply calculating the search direction

can become more expensive than the gradient evaluation itself--a relatively unhappy

prospect. The point at which this trade-off occurs remains as an area of future study.

A more complete treatment of the quasi-Newton and other optimization strategies

is given by Gill, Murray and Wright [31]. In this work the BFGS quasi-Newton method

applied to the Cholesky factored Hessian matrix will be used exclusively. The specific

implementation of the algorithm (3.21) that is used, QNMDIF, was written by Gill,

Murray and Pitfield [30] and enhanced by Kennelly [67].

3.6 LINE SEARCH ALGORITHM

Once the search direction is obtained from the quasi-Newton or alternative method,

step (2) of the general algorithm presented in Section (3.1) is complete. For highly non-

linear design spaces, an explicit method to determine the optimal step length does not

exist. Thus an iterative univariate minimization method may be employed to find the

optimum stepsize. Any of the available line search techniques, such as the Fibonacci

search, the golden section search, or successive quadratic interpolation, can be used in

order to estimate the minimum along the search direction. Here, successive quadratic

interpolation is used exclusively. Successive quadratic interpolation calculates the ob-
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jective function at three points in the search direction, fits a parabola through the

three points, and then obtains the minimum of that parabola. The objective function

is then calculated at the location of the projected minimum, replacing one of the orig-

inal three points. A new quadratic is thus defined and the process is repeated until

a solution within a specified tolerance of the true minimum along p_ is obtained. A

consideration that should not be neglected is the computational cost of these univari-

ate searches. If an iterative line search method is used in conjunction with an adjoint

based method to obtain gradients, the computational cost of the function evaluations

within these searches is likely to constitute the majority of the total computational

costs. It is for this among other reasons that Jameson chose not to attempt iterative

univariate searches in his initial work. However, it must be recalled that for both

conjugate gradient and quasi-Newton methods which employ rank two updates, there

is an assumption that minimums are attained along their previous search directions.

Once the univariate minimum along the search direction is found, step (3) of

the general algorithm in Section (3.1) is complete and the entire process can be re-

peated. In practice the unconstrained quasi-Newton algorithm combined with succes-

sive quadratic interpolations for the line searches is extremely efficient. It has been

applied successfully by the author to many aerodynamic optimization problems where

finite-difference gradients were used [90, 97, 91]. Reference [91] shows that even for

three-dimensional calculations, where the large cost of the function evaluations often

debilitates practical design, the quasi-Newton/successive quadratic interpolation ap-

proach can in fact obtain designs with reasonable computational resources. It was

through this finite difference research that it became apparent that most of the comp-

utational effort spent in the optimization process occurred in determining gradients.

The idea was therefore to replace the finite difference gradient by a much cheaper and

yet still accurate technique, while leaving the rest of the design process intact.
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3.7 ALTERNATIVE STRATEGIES

Although this research will exclusively use a quasi-Newton descent method, such a

method may not necessarily be the best alternative when an efficient adjoint solver is

employed. In fact the development of a method to obtain cheap gradients is forcing a

reexamination of what design algorithm is appropriate.

3.7.1 FINITE DIFFERENCE BASED GRADIENTS

When finite difference methods are used to approximate the gradients, it is always

necessary to work with highly converged solutions. This is illustrated by taking a

simple example involving drag minimization.

Let us say that the objective function is I -- _CH, where _ is such that the product

scales to O(1). Now, suppose that during the calculation of the flow, the error in

the evaluation of the cost function scales linearly with the residual error of the flow

solution. 4 The finite difference procedure may be written as

d ]-_-_= A h

where pl is the residual of the discrete flow equations, X is the ratio of the error in

the cost function to the residual of the flow solution, and Ah is the change in the

design variables. If it is required to have at least 2 significant digits of accuracy in the

gradient, then

2_pl
-- < ,01.
A('d

This implies that for a given _, say _ = 1, the flow solver must be converged to two

orders below the level of ACd. The order of AC_ is determined by the magnitude of

Aii. However, since the magnitude of A[_ must be small in order for the discretization

4This relationship seems to hold for many aerodynamic design problems involving nonlinear inviscid
governing equations.
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error of the finite difference method to be small, IPll must be forced to small values

in order for the method to remain accurate. Assuming AC_ = .0001 (one drag count),

this gives IPll = .00001 meaning a convergence tolerance of 10 -6 for the flow solver.

Thus even for cases where accuracy in the gradient can be relaxed, a high order of

convergence is required for flow solutions. It was this fact that led initial researchers

in the field, such as Hicks [39], to lean towards more sophisticated descent algorithms.

The reasoning was that since significant computational effort was expended to achieve

reasonable gradients for even a few design variables, the maximum possible informa-

tion should be obtained from these expensive gradients.

3.7.2 ADJOINT-BASED GRADIENTS

Replacing the finite difference gradient by one obtained through the solution of the

adjoint equations changes the picture dramatically. Not only is it possible to determine

the gradient with respect to many design variables at low cost, but also the error

analysis of the gradient changes for the better:

d---h = _\ dh :t:-_-

= _-_

where P2 is the order of convergence of the adjoint solver, and AI and ,_2 represent the

ratios of the error in _ to the residuals of the flow and adjoint solutions respectively.dh

The error term is scaled by _ since the solution of the adjoint is the solution of

only the _ portion of the flow solution. Thus, as the gradient goes to zero, the error

must also go to zero so long as the adjoint solver consistently represents the variation

of the flow equations. Note that since _ is directly calculated the accuracy of the

gradient does not depend on a choice of Ah. Again, if _l = 1 and _2 = 1 and two

places are required for the gradient, IPll + IP21 < .01. This implies that the flow solver

and the adjoint solver must be converged to just less than 10 -2 instead of 10 -6. The

key point is that even after only a few flow solver and adjoint solver iterations are

complete, valuable gradient information is already available. In contrast, hundreds
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of flow solver iterations are usually required to obtain useful levels of accuracy in the

gradient information for the finite difference method. The concluding implication is

that if a sophisticated descent procedure is used which requires that the minimum be

obtained along the calculated search directions, accurate flow solutions obtained for

these single parameter searches may be far more expensive than the cheap solutions

required for the gradient calculations.

This realization leads to reassessment of the whole design procedure. As cited

earlier, Ta'asan chose the alternative of tightly coupling the flow solver, the adjoint

solver, and the design solution via a multigrid procedure. This approach cannot be

used in conjunction with a sophisticated descent procedure because such procedures

are intolerant of the noise created in both the cost function and gradient by the initial

stages of the strongly coupled approach. In theory, this alternate approach would

converge all three systems with a small coupling penalty for each of the systems;

thus the total cost of the entire design would be reduced to approximately that of two

flow solutions. It was this attractive feature which initially led Jameson to use tight

coupling and the steepest descent algorithm in his preliminary works [54, 55, 59, 58}.

Ta'asan's approach is an extension of Jameson's initial method in which multigridding

is used to further accentuate the coupling among the three systems. Although it is

not explored here, future efforts that employ an adjoint formulation should study the

trade-offs between the level of coupling and the use of sophisticated design methods.

3.7.3 LIMITED MEMORY QUASI-NEWTON METHODS

The future of using adjoint methods may reside in their application in conjunction

with limited memory quasi-Newton methods (LMQN). This wide class of methods

tends to fit between the conjugate gradient and (full) quasi-Newton methods that have

been described earlier in this chapter. They attempt to combine the low storage re-

quirements of the conjugate gradient methods with the computational efficiency of the

quasi-Newton methods. Some of these methods, like the conjugate gradient method,

employ a restart procedure if it appears convergence toward a minimum has stalled.

In the case of the conjugate gradient method, recall that these restarts were necessary
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for problems in which a particular search direction can not be properly eliminated

from the design space by one pass. For aerodynamic shape optimization, where ex-

act line searches are not available and quadratic design spaces are not necessarily

present, this restart option becomes necessary. Some LMQN methods attempt to im-

prove the available design space information of the basic conjugate gradient method

by recasting it as a quasi-Newton method [9, 29, 101]. These methods retain the

conjugate gradient methodology of eliminating prior search directions but attempt to

take greater advantage of the available curvature information along each successive

search direction. They are characterized by very low memory requirements making

them ideal for large scale problems. However they also retain the necessity to restart

that is inherent in conjugate gradient methods. Other LMQN methods[79] resemble

true quasi-Newton methods more closely. These methods achieve their low memory

by storing the necessary vectors that are used to calculate update matrices instead of

the approximate Hessian. Then instead of retaining all of the previous update infor-

mation, only those developed from the last several iterates are retained. The search

direction for the next iterate can be calculated directly from the update vectors with-

out directly determining the approximate Hessian. This strategy has the advantage

over the conjugate gradient-like methods in that no restart option is necessary. Old

search direction information is progressively dropped as the method proceeds. As for

true quasi-Newton methods, the update vectors may be specified by a host of different

low rank approaches. Again large scale problems are possible since the storage and

computational costs of these methods are proportional to _i_ where £; is the number

of previous updates that are retained. Such alternatives should be attractive for use

in conjunction with adjoint methods since they are more appropriate for large scale

problems. More importantly, if rank one update versions of these methods are used

they should be more robust in the presence of both inexact line searches (since the rank

one update does not place any conditions upon obtaining a minimum along the search

direction for accuracy to be achieved) and inexact gradients (since old possibly inac-

curate updates are quickly cycled out of the Hessian approximation). Thus it may be

possible to construct an approach, such as the one used by Jameson and Ta'asan, that
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attempts to converge the state, costate, and design systems simultaneously without

resorting to steepest descent.
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Chapter 4

CONTROL THEORY APPLIED TO THE

POTENTIAL FLOW EQUATION

Chapter 1 presented the conceptual framework for applying control theory to a gen-

eral cost function and an arbitrary set of constraint governing equations. This chapter

explores the application of control theory to various cost functions and flows governed

by the potential flow equation. In keeping with Jameson's previous work [54, 55],

this research explores the application of control theory to the continuous differential

equations (often termed the continuous sensitivity approach). The development fol-

lows closely from that presented in reference I55] of Jameson's earlier work, with the

significant difference here being that the potential equations are treated in a general

transformed coordinates instead of polar coordinates and a conformal mapping.

4.1 POTENTIAL FLOW EQUATIONS

In this chapter equations (1.6 - 1.13) are applied to the differential form of the potential

flow equation. Consider the case of two-dimensional compressible inviscid flow. The

steady state potential flow equation can be written as in equation (2.9):

_) _)
(pu) + -_- (pv) = O, (4.1)

Ox (Jy
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where u and v represent the Cartesian velocity components. The coordinate transfor-

mations may be defined as in equation (2.10):

/
,r l/o 42

where x and y represent the physical plane, and ( and 7/represent the computational

plane. Following the development in Section (2.4.1) we can write

0(pJU) + _ (pJV) = 0 in D, (4.3)

where

b' = Al1¢_ + A120,1 (4.4)

V = A 1204 + A220,1, (4.5)

and
F

A = h°-lK T-1 = [ All A12

[ A12 A22

4.2 COST FUNCTION FOR THE INVERSE PROBLEM

In order to carry out the continuous sensitivity approach, it is first necessary to define

the cost function. While various cost functions will be developed in this research, it

is illustrative to develop fully one particular choice of the cost function and generalize

later. The simplest practical design problem is to force the airfoil toward a target

surface speed distribution. One concern that confronts this, as well as any choice in the

cost function, is whether it can lead to a design problem having non-unique solutions.

Since this will be a concern for the design problem using the Euler equations as well,

the reader is referred to the general discussion to be presented in Section (5.2.1).

Returning to the problem at hand, for isentropic potential flow, the specification of a

surface speed distribution uniquely determines pressure, so the problem is equivalent



Chapter4 Control Theory Applied to the Potential Flow Equation 88

to specifying a target pressure distribution. In effect, we are using control theory

combined with numerical optimization to solve the inverse problem. In fact, the

development follows very closely Lighthill's original development for incompressible

potential flow. The major differences here are that the target need not necessarily be

achievable for the method to produce useful results, and that the method is generalized

to treat compressible flows. Consider the cost function defined such that a target speed

distribution will be achieved:

I = _ :(q - qd)2 ds = -_ _ \-_j d_, (4.6)

where qd is the desired speed distribution, C is the airfoil surface, and ._ is the arc

length along the surface.

The design problem is now treated as a control problem where the control function

is the airfoil shape, which is to be chosen to minimize I subject to the constraints

defined by the flow equations (4.1-4.5). Following the linear algebra developed in the

introduction (1.6-1.13) we take the first variation of this cost function giving

.f (ds) 1_ (d._)bl = (q-qd)bq -_ d_+_ {q-qd)2b -_ d_

f O(_O),,
= _c (q - qd) ---oT-.¢

+_- b(_) d_ 0¢b ___ _, (4.7)

since on the airfoil surface

q(" ---

By using the fact that

-- o

0s 0( 0._

we may rewrite equation (4.7) as

O(,_)d. 1 d._ (4.8)
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4.3 VARIATIONS OF THE GOVERNING EQUATION

In general, the next step is to find how a modification to the airfoil geometry causes

a variation _, as well as a variation in the grid parameters ball, hA12, _A22, and b./.

The variations in b', V and p are

5U = b(All)¢_ % Alltf¢¢ _- b(A12)¢,l ÷ A12bO,_

_V -- b(A12)¢_ _- A125¢_ _-_(A22)0,_- A2250,t

By inserting these relations into equation (4.3) it follows that b¢ satisfies

LbO = - (bJ,(_All,_A12,_A22) _]P(bJ, bAll,_A12,_A22),

where

and

L-

(4.9)

pJ All c2/ +pJ A12

+ _ PJ A12 c2 )-_+p.I A22 c2 ) _ (4.10)

( ) (vow)f_ = pVSd + pJO,_ 1 VO,j hA22 + pJ¢_ 1
2c 2 c 2

U(Pv) hA22bA12 _- pJ ¢,_ - 2c---Y

_A12+PJ0_ \ 2c 2 ]

The result is that (4.9) is equivalent to step (1.7) in the introduction. Now following

the developments between equations (1.7) and (1.12), if ,_', is any periodic function

vanishing in the far field, equation (4.9) can be multiplied by _, and integrated over

the domain giving

_ d(dT/= 0. (4.11)

Here the integration over the domain, just as in the case of the integration on the

surface to obtain i, is the continuous equivalent to the matrix-vector and vector-vector
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products seen in the introduction. In the case of the definition of / (4.6), the integration

results in a single well-defined scalar cost function. Likewise, in the case of equation

(4.11) the integration over the domain results in a scalar which can then be subtracted

from the definition of _ I.

4.4 DECOMPOSITION OF THE VARIATIONAL POTENTIAL

Now as in the potential flow solution methodology (see Section 2.4.1), the variational

of the potential is split here into three parts:

where _0(; is the variation of the perturbation potential, _¢E is the variation of the

circulation potential, and t0_ is the variation of the free stream potential. Thus

Similarly, the definition of the variation in the cost function, equation (4.8), can also

be split, giving after integration by parts,

61 = -/: O(q-D qd) _oc;d_ _ /, O(q-D qd) bOEd_ _ _c O(q_ qd) _@;,_ d_

1 ds

By subtracting (4.12) from (4.13) we mimic step (1.8) to obtain:

1
+-_ /: (q2d -q2)6\--_j d_

-f.

(4.14)

To keep this development simple it is assumed that the solutions are all calculated on

an O-mesh.
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4.5 VARIATION OF THE PERTURBATION POTENTIAL

The next step is to form the adjoint equation. In the case of the linear algebra, equation

(1.9) was obtained from (1.7) simply by taking the transpose of the term _,,,Tr,._] _,

r_,_l _
to obtain 6u, T L_J _1,. In the case of the continuous system presented here, this

transpose is equivalent to switching the function that L operates on from 60 to _,.

Thus the next logical step is to integrate portions of equation (4.14) by parts in such a

way as to obtain the terms _¢c, L_/,, 6¢EL_/,, and _Ou_ L_,, where L_/, will become the left

hand side of the continuous adjoint equation. Now since L is a second order operator

it is convenient to use the second form of Green's theorem (integrating by parts twice)

to switch the order of operation. 1. Thus, for the term in equation (4.14) that involves

_¢_; we can write, after subtracting the term fD _cPc;L_,d_ d_],

D(t/,L_Oc; - b¢c:L_',)d_ dTI

where the other boundary integrals along the cut line and the outer boundary vanish.

The integrals along the cut cancel since both _, and c)c; are assumed to be periodic.

_/' = 0¢; = 0 at the far field by definition. Therefore, by choosing _/,to satisfy the adjoint

equation,

L_, = 0 (4.16)

in the domain with additional constraints such that

_/, = 0 at the fax field,

is periodic along the cut,

pJ (A12_/'¢ + A22t/',_)
O(q - qd)

on the airfoil surface,

it is possible to rewrite equation (4.14) after cancelling boundary terms as

bl = - _ O(q_qd)6C)Ed_-.-- -- _c ()(q-qd)bou_d_• :, O_

1The general form of Green's theorem used here is presented in Appendix C

(4.17)
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1 ds

+ } d,,

+ _(. {v"pJ (A12b_(;_ + A22b¢c;,)}d_. (4.18)

In equation (4.18) the variation in the perturbation potential, _(;, has been eliminated

from all terms except for the last one. In order to complete the process, terms dependent

upon _0E and b¢lr=, as well as the last term must be eliminated.

4.6 VARIATION OF THE CIRCULATION POTENTIAL

The term involving variation of the circulation potential can be written following (4.15)

as

, L60E -- _¢EL_/') d_ d7/ =

.v) )

where B represents the outer boundary and ('utl, and ('ut L represent boundaries along

the cut line on the upper and lower halves. The various boundary terms in (4.19) have

been derived as follows: First, along the profile, the portion of the boundary integral

related to the flux through the surface have been dropped. Meanwhile, at the outer

boundary, most of the boundary integral vanish since _, = 0, _/,_ = 0, and /_0E,, = 0

by definition throughout the domain. Finally, along the cut line, boundary integrals

not present in (4.19) cancel since both _i,and b0L-_ are continuous across the cut and

&_L', = 0 everywhere. Remembering that _, must satisfy L_,, = 0 with the boundary
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condition specified by (4.17), the variation in the cost function, after cancelling terms,

becomes

bl = -/, O(q-_ qd)(5¢,I_ d(

1 ds

c2 ] _'_ _2 ) _',,] dTi

4.7 VARIATION OF THE UNIFORM FLOW POTENTIAL

Further simplification occurs by expanding the term related to the variation of the

uniform flow portion of the potential:

/D (_"L_ckt '_ - _¢c'_,_ d_ d_] =Lg,)

/c _'pJ (A126¢u_, + A226¢u_n)dE +/c 54)Uo_pJ (A121/,( + A22W,,)dE.

All additional boundary terms at the far field vanish since 4, = _',_ = O, and we will

restrict ourselves to design cases in which the flight conditions except for _ will remain

fixed (bOt_,, = 0). We could have just as easily applied the bO_., = 0 condition from

the beginning of these derivations and avoided some of the details in this section.

However, by including these details, we gain an understanding of how a change to

the uniform flow such as Mach number can get into the act. Along the cut it is again

assumed that _, is periodic. The variation in the cost function can now be written as
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1 ds

+ o,,/

+ _, ['_',d(

+ f, {_,pJ (A12_ (Oc;_ + OE_ + Ou_.,¢) + ,4226 (Oc;., + OE. + 0_,.,))}d(

+ 6_EpJ All-- c2 j _",_ dTI
t.t t [ ,,

_r2

/
_',( + LA12 - __

£ 2 ] k

where the terms involving the grid variations q) and/_' have been integrated by parts

and the resulting boundary integrals except at the profile surface vanish either due to

periodicity at the cut or because the mesh metrics are frozen at the far field. Now it is

possible to substitute the definition for P in the above equation and use the fact that

both V = 0 and _ t' = 0 such that the fourth and fifth terms cancel to give:

c2 ] _/,,, d(

U2)11- 7 V'_

c 2 J _"'_

+(A12 UV_ )

+(A12 UV )- -_- ) '0,_ dTI.

1 ds

4.8 THE KUTTA CONDITION

The only remaining term involving a variation in the potential relates to a variation in

the circulation potential _E. This term may be eliminated by employing the equation
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for the Kutta condition:

0
hE+ F - 0

2r

0 o_¢E + Fb + 6F2r

In the case where lift is fixed (iF = 0), a condition that will be forced for all design

examples using the potential flow formulation, the jump in the variation across the cut

line may be written as

However, since

it follows that the boundary integrals involving the cut lines cancel each other out

of the expression for 6I. Furthermore, the implication of fixed circulation also forces

_q_E = 0 to be satisfied along the outer boundary since it is a region where the mesh

is assumed to be fixed. The final expression for the variation in the cost function may

therefore be written as

1_( (q2 q2) 6 (d,_)= ,

f
+ JD + d_d'l" (4.19)

It must be noted that since a fixed circulation formulation has been chosen, which

mandates that angle of attack o is allowed to vary, in order to be consistent the

_1 _o must be added to our definition of the variation in the cost function. Theterm

remaining variation 6o would then create a supplementary boundary condition on the

adjoint equation which would be determined by using the definition of fixed circulation.

However in practical tests, when the cost function is chosen as the inverse problem,

the addition of this term showed no discernible difference. In the case of other cost

functions, such as drag, it turns out that this additional term can not be neglected, and

thus the derivations in Section (4.13.1) include the term. In the recent work of Ta'asan

et al. [71] it has been shown that a Dirac delta function is necessary as a boundary
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forcing term for the case of 5F ¢ 0, in order to eliminate _OE properly for, say, a fixed

case.

4.9 ALGORITHM OUTLINE

Considering the cumbersome integration by parts, it is gratifying that the final form of

equation (4.19) remains relatively simple. In order to solve for 51, the following steps

are necessary:

1. Solve the flow equation at the initial point according to Section (2.4).

2. Solve the adjoint equation

subject to

t¢, = 0 in D

O(q - qd)
pJ [A12_,_ + A22_/',,] - /)_

_', is periodic along the cut line,

on (',

_, = 0 at the outer boundary.

3. Solve for the mesh metric variations, Q and/5.

4. Calculate the gradient _$or a specific variation _I using equation (4.19).

The method of solving the flow variables has already been discussed in Section (2.4).

The method of obtaining the mesh metric variations as well as a more detailed pre-

sentation of the design algorithm and discussion of the design variables is given in

Chapter 6. The details of the discretization and solution algorithm for the adjoint

equation will be discussed in Chapter 7.

4.10 DISCONTINUITIES

If the flow is subsonic, this procedure should converge toward the desired speed dis-

tribution since the solution will remain smooth and no unbounded derivatives will
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appear. If the flow is transonic, however, one must allow for the appearance of shock

waves in the trial solutions even if qd is smooth. In such instances, q - q,t is not differ-

entiable and the boundary condition for the adjoint equation contains a jump in the

forcing term. If the target speed distribution also has shock wave(s), the boundary

condition may have multiple step discontinuities. The solution to the adjoint problem

for these cases can become difficult because they are analogous to solving flow solution

problems with slope discontinuities in their airfoil surfaces. Furthermore, the validity

of using the presented continuous sensitivity analysis is strictly tied to the continuity

of at least first derivatives in both the flow and adjoint solutions due to the multiple

use of integration by parts.

In the presence of shock waves the analysis should preoceed from the weak form of

the governing differential equation. It can be argued, however, that the employment

of artificial dissipation in both the state and co-state fields, which smooths any un-

bounded derivatives in the solutions, implies that the integration by parts developed

in Sections (4.5 - 4.7) remains consistent. As in the case of the flow solution problem,

the alternative is to use a shock-fitting approach. To treat the solution of the adjoint

equation in this manner, domain decomposition along the shock boundaries would

have to be implemented, with separate integration by parts used in each domain. The

resulting boundary integrals would then be forced to cancel by matching conditions

along the interface. It seems reasonable that this level of sophistication is unwar-

ranted since weakly smoothed shocks are more than adequate for most reasonable

design problems. Furthermore, it must be remembered that the solution of the adjoint

equation is used only to obtain gradient information. It does not affect the flow solution

accuracy in any way. Therefore, if reasonable gradient information is obtained, the

design process should still proceed. The only difficulty left is the treatment of the

adjoint solution for cases that contain discontinuities in the forcing function at the

surface.
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4.11 IMPLICIT SMOOTHING

Two methods have been developed here to improve the solution robustness in the case

of jump discontinuities. The first follows the work of Jameson in using the idea of

implicit smoothing to remove any discrete jumps from the forcing term 155, 541. The

cost function of equation (4.6) is thus replaced with

I = _ , vlO 2+v2 -_- d_, (4.20)

where Vl and v2 are parameters, and the periodicfunction 0(_) satisfiesthe equation

d20

vlO- v2-_ = q- qd. (4.21)

The new definitionof I,likethe one given by (4.6),is a particularform ofa general

class of cost functions that seek to minimize the differencebetween the target and

actual pressure distributions.For the case of(4.20)bI may be rewritten as

dO d bO) d__I = f, (v10,50 + v2--g_-_-_

Thus, O replaces q - qd in the previous formula and the boundary condition (4.17) is

modified such that

0

p,] (A12tP_ + A22g'v) -- - 0-'_ (O) on ('. (4.22)

By choosing appropriate values for Vl and _'2 it is possible to smooth the cost function

in such a way that greater robustness of the adjoint solver is maintained. Furthermore,

even if at the initial point there is a significant difference between the reformulated and

original cost functions, this difference will decrease as the design process proceeds. As

the target design is approached the magnitude of boundary discontinuities will drop

and thus require less smoothing and hence a greater correspondence between the

modified and original cost functions.
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4.12 SHOCK WAVE UNWEIGHTING

Motivation for the second approach begins with the realization that the use of dis-

sipation in the flow solution method forces the jumps in the boundary term arising

from the trial solution to become somewhat smeared. This is not necessarily the case

for the jumps created by the target distribution, which may have true discontinuities.

Furthermore, target distributions with jump discontinuities will in general represent

unattainable pressure distributions at least near the shock region. The implication is

that there is little hope of matching point by point a target speed distribution through

a shock structure. The shock structures obtained from practical flow solvers are often

not models of physical phenomena, but are instead artificially created to permit effi-

cient and robust solution calculation. In practice, even where the solution very closely

matches the target distribution, points within and very near the shock structure tend

to be mismatched compared with the rest of the discrete representation. In fact, it

is quite possible that large differences between the target and the actual solution in

the shock region may dominate the adjoint solution and hinder the attainment of the

desired speed distribution.

On the basis of this insight, an alternative approach to promoting successful adjoint

solutions can be formulated. The key is to unweight the integrand of the cost function

in regions which span a shock wave in either the trial solution or the target solution.

Therefore, the cost function is rewritten in the case of a single shock as,

/ = _ _(1 - g_ ((=))(q - qd)2 d_, (4.23)

where g= (_) is a Gaussian distribution centered at the shock location _,. The width

of the Gaussian must be adjusted in a manner similar to the adjustment of the terms

vl and v2 used in implicit smoothing. In the center of the shock structure the cost

function goes to 0 as g_ approaches 1, while far away from the shock, the cost function

retains its full value as g_ approaches 0. In essence, no attempt is made to mimic the

shock structure in the solution of the adjoint equation. The test used to detect shocks

compares (,'p with ('_ and checks the sign and magnitude of the pressure gradient.

Note that this test is far more restrictive than in the case of implicit smoothing which
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tends to smooth any regions with large gradients in the forcing term, irrespective of

whether they come from a shock or not. Shock structures are not the only locations

where the boundary condition for the adjoint equation may contain high gradients or

discontinuities. For example, the region about the leading edge stagnation point

may have high gradients since it is unlikely that both the trim solution and the

target distribution will have corresponding stagnation locations. While the implicit

smoothing technique will smear the forcing function in the stagnation region, the

shock unweighting technique will operate only in regions containing a shock in either

the trial solution or the target.

4.13 OTHER COST FUNCTIONS

Thus far, the presentation has been restricted to the inverse problem. Traditional

inverse methods, described in Sections (1.2.1) and (1.2.2}, in general, mandate that

the target is attainable because the convergence of the flow-field requires that the

pressure match the target. As mentioned earlier, the inverse method presented here

does not depend on the target pressure distribution's being attainable. The advantage

of this difference will also be explored in Chapter 8. Even though the current formu-

lation is more robust than many inverse methods, it thus far still suffers from the

classic problem related to all inverse methods: it does not allow for the exploration of a

variety of objective functions. For practical design of airfoils, objective functions other

than simply the target speed are vital. Truly optimum designs, even from the inviscid

perspective alone, must look directly at the aerodynamic coefficients governing perfor-

mance (Cd, ('l, ('l/C_, etc.). Even the most brilliant aerodynamicist will not be able,

in general, to prescribe the 3-dimensional pressure distribution which achieves, say,

minimum drag at a given ('l. To generalize the design method it is therefore necessary

to develop other cost functions within the same framework.
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4.13.1 DRAG

For the case where the cost function is drag, (4.6) is replaced by

I =Cd = ('_cosa+(:,_sin

1/c(0 _ Ox )- t 2 - P cos o - _-_ sin a d_, (4.24)_'_ Po_ M o_c

where C, and C,_ are the axial and normal force coefficients respectively. The first

variation of the cost function is now

_l = _C_cosa + _C,_sin_

oco ]+ [0_ cos_+_sina _,_

+ [-('_ sin a + C,_ cos _] &,, (4.25)

where _ refers to variations independent of changes in e,. This split is necessary

since the flow-field governing equations are written in terms of a fixed a. However,

the problem commonly of interest in airfoil design is that of fixed lift or circulation

F. To implement such a method, an outer iteration is incorporated in the flow solver

which changes a by examining the lift curve slope. Without this additional expression

to obtain _, the variation of the aerodynamic coefficients with respect to _ must be

treated separately; hence the form of equation (4.25). Now in order to obtain _ I relative

to a fixed lift, an additional constraint is necessary:

bCt=O = blC,_cosa-C'_sin_l

= _(',_ cos o - _(.', sin o

o 'o ]+ [0_ cos_-_sin¢, _,

+ [-C,_ sin _ - C. cos (,1 &_. (4.26)

Combining (4.25) and (4.26) by eliminating _ gives

b('d = _('_ cos ,_ + _(',_ sin ,,

[C,+ _cos,_ + _sin,,] - , _ , ,
, _ ;_C •cos.  sln.,} cos.,
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With all variations now in terms of _(,',, and _C'a it is possible to carry out the variations

further in terms of _p and the _(metrics):

61= 17p_M2 _ 6p cosa- _-_-_sina +f2 cos(_+_--_sin_ d(

1 f [(("") _,._ ) ((o,) (o.) )]+_P_,M_I 2 p 6 -_ cos(_-6 \_-_]sino +_ _ _-_ cosa+5 _ sinr_ d(

(4.28)

where

Now since

and

bp

it can be shown that

_1=

Ct + cos _ + c_/
]sin
J

[ _ _sin ]-Cd + cos _ -3c, ,9c_

p"r

p-
-rM 2

_'-_ (1-4)}
-,,M 2,

+

. j. _,°-.(,_,)r,,';,.;-,_) _,', _-'_,)]_,TP_,M_," c.'°_"3_ '' _ /k-3_-coso,-3-_sino, +_:_ka eos_+3-_-sino, d_

1 _. [((,;y) (0x)) ((Ox) (Oy_)]1 • 2 p 6 cosa-6 sinc_ +fl _ cos,,+

(4.29)

Thus (4.19) is replaced by

1 / i9¢ (t)()[(/)y 7,_ ) //0, Oy . )]l= - p¢,_-_6 coso- sin. +n_.t-_cos_+=sln<t d(

, _ [((_.) (..)) (('-) (;,.))]+ _31._1' ML c . p 6 _ cos, - _ _ sin r, + _1 6 /-_ cos r, + 6 \-_ sin <, d(

+ Jo " -a,_, [,o_,tO/- _ + 71/) d_d,, (4.30)
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where the boundary condition on 4', (4.17), is replaced with

0 PO_ o_ Oy Ox

pJ (A12W_ + A22_,,,) = +_-_ t 7 P_ M2 c _-_ cos _ - _-_ sin e_

( coso+ 
(4.31)

Note that by setting D = 0 in all of the above equations, the boundary terms can be

formulated such that they obtain _Cd for a fixed a; 6_ = 0. This is not useful here since

the field equation for the adjoint was derived for fixed F. However, later in the Euler

formulation, this approach may be useful. An important complication that is caused

by this use of a fixed lift development is that values for _ and _ must be available

prior to the calculation of the adjoint solution. For all the cases to be presented later

in this thesis, where they are necessary, these coefficients are calculated by finite

differencing two flow solutions with slightly different lift coefficients at the end of each

design iteration. Note that this modification is also required for the design method

using the Euler equations.

4.13.2 COMBINED COST FUNCTIONS

Other cost functions which rely on surface integrated aerodynamic quantities can be

developed similarly. Further, it is possible to take combinations of these functions

to create more sophisticated quantities of merit. For example, to achieve the best

approximation to a target speed distribution while simultaneously reducing the drag,

(4.6) and (4.24) can be combined, giving

1 = A1 _ , (q - qd)2 d_ + A2 ('d-

The variation of ! may then be written

+
- -- cos _ +/-_ sin (, d_
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+

+_ p[(6(_)coso-6(_)sina)+_(_(_)cosc*+_ \_-_jsinc_)]d(}

-_ + P d_d, I.

The surface boundary condition for the adjoint problem works out to be the simple

summation,

o[pJ (m_2_,_+ A220,,) = -_ -A1 (q - qd)

+A2  cos, -  -sin.

(4.32)

Therefore, by implementing such a combined method and letting the user choose the

weights A1, A2," • ", it is possible to create an extremely versatile design procedure.

Desired cost functions that relate to field properties instead of boundary properties,

such as such limiting the shock strength throughout the entire domain, may also be

treated within the framework of control theory-based design. In place of having a

forcing term on the boundary condition of the adjoint solver, these cost functions

would have source terms applied to the adjoint domain equations. Cost functions of

this type will not be explored in this research.
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Chapter 5

CONTROL THEORY APPLIED TO THE

EULER EQUATIONS

This chapter develops the general application of control theory for aerodynamic shape

optimization using the Euler equations. The work here follows the initial ideas pro-

posed by Jameson [54] and later expanded by both Jameson [59, 58] and (indepen-

dently) Lewis and Agarwal [76, 75]. The development parallels that of the preceding

chapter in many respects. Nevertheless, major differences are present. First, the

Euler equations operate on the vector valued function w as opposed to the scalar 0.

Second, since the time dependent Euler equations are hyperbolic, instead of elliptic,

the general property of self-adjointness is lost. This implies that the transpose op-

erator present in the general derivation of equation (1.9) will play a key rSle in the

solution of the adjoint formulation for the Euler equations. Seen another way, the

second order potential flow equation is well posed as a boundary value problem while

the first order Euler equations require careful treatment of the boundary conditions

to avoid over-specification. These differences result in fundamental alterations in the

development of the adjoint system.

As stated earlier, both the Euler and the potential flow equations are inviscid

formulations. The Euler equations are less simplified because the flow is not assumed

to be either irrotational or isentropic. For the study of airfoil design, this difference

is most evident in the modeling of compression shock waves. The Euler equations

correctly model these flow discontinuities and their associated entropy production.
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5.1 THE EULER EQUATIONS

Consider again the flow in a domain D. The profile defines the inner boundary C, while

the outer boundary B is assumed to be distant from the profile. Just as in Chapter

2, let p, p, u, v, E and H denote the pressure, density, Cartesian velocity components,

total energy and total enthalpy. Recall that for a perfect gas

{ 1 } (5.1)

and

pH = pE + p. (5.2)

Reiterating expression (2.3), the Euler equations may be written in differential form

as

0w Of 0g
0--_+_xx+_yy =0 inD,

where x and y are again the Cartesian coordinates, t is the time coordinate, and

(5.3)

1

pu ]
W_ i f__

I'

pv jpE

pu

pu 2 + P

puv

pull

, g=

pv

pvu

pv 2 + P

pvH

(5.4)

As already defined, the coordinate transformations may be written as the matrix

Ox Ox

,_g ,Or

where the Jacobian is

Ox Oy
J = det(K) -

O_ 07j

Introduce contravariant velocity components

Ox Oy

071 0_"

=:7
07_ U
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The Euler equations can thus be written in divergence form for the computational

coordinate plane as

OW OF OG

0----_+ -_- + _ = 0 in D, (5.5)

with

p

pu

W = J

pu

pE

F = J

pU

p U u + _-_p

o__¢
pUv + ayP

pl: H

G = J

pV

pVu +

071
pVv + 7_-_P

p_'H

(5.6)

Now since the solution method outlined in Chapter 2 uses a computational coordinate

system that conforms to the airfoil section in such a way that the surface (' is repre-

sented by 7j = 0 (i.e., an O-mesh), equation (5.6) is satisfied in the domain, and the

flow tangency,

V = 0 onC, (5.7)

is satisfied on ('.

5.2 COST FUNCTION FOR THE INVERSE PROBLEM

As a first example of the use of control theory for the Euler equations, consider again

the case of the inverse problem. In contrast to the potential flow formulation, here it

is convenient to specify a target pressure distribution as opposed to a target velocity

distribution.
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5.2.1 NON-UNIQUENESS OF THE DESIGN PROCESS

NON-UNIQUENESS DUE TO NONLINEAR GOVERNING EQUATIONS

Before developing the necessary equations for this cost function it is worthwhile to

consider the issue of the possibility of non-uniqueness of the design process. Since

both the potential flow and Euler equations are nonlinear they do not preclude the

possibility of non-uniqueness even in the flow solution. In fact, evidence which sup-

ports the presence of more than one stable flow solution, at least for inviscid flows

given prescribed airfoil shapes and operating conditions, can be gathered from Jame-

son's works [100, 56]. It is interesting that such solutions can be shown to be present

for both the potential flow and Euler equations, although it seems that they occur

somewhat more often for the potential flow equation.

With such well documented non-uniqueness in flow analysis cases using either

system, the possible consequences of non-uniqueness on the design process must be

considered. In the case of design, let us say for the inverse problem presently being

examined, the use of nonlinear governing equations as a constraint implies that there

is a possibility of more than one airfoil shape producing exactly the same pressure

distribution. For the Euler equations, this possibility may be accentuated by the

fact that specifying only one quantity at the surface, such as pressure, is not enough

to determine the flow uniquely due to the possible production of entropy. For the

potential flow equation, prescribing the pressure (or the velocity) at the surface exactly

determines the desired state. In any event, neither system seems to eliminate the

unlikely case of having two or more airfoils leading to the same pressure distribution.

In one respect, this may seem to be irrelevant from the design point of view since

any one of the solutions satisfying the target pressure distribution is in fact a valid

solution of the design problem. On the other hand, the presence of more than one

valid design solution implies that a multimodal design space may be present. And

since the design methods being used in this thesis are gradient-based, and hence

assume a unimodal design space in order to achieve a global minimum, the eventual

consequence of developing design methods in conjunction with nonlinear governing
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equations is that it increases the possibility that only a local optimum may be achieved

during a particular design effort. The important point is that the possibility of multiple

airfoils admitting the same target pressure distribution should not have consequences

that prevent the design process from moving in the direction of an improved design.

There remains the possibility that given a multimodal design space caused by non-

uniqueness of the solution, the design procedure may jump between adjacent valleys

during the course of a line search and thereby stall convergence.

NON-UNIQUENESS DUE TO POOR PROBLEM FORMULATION

A far more likely route to non-uniqueness in the design problem is also of concern.

This alternate form is best illustrated by taking the case of drag as the cost function to

be minimized. If the conditions under which the airfoil operates are such that a zero

inviscid drag case can be achieved by modifying the chosen set of design variables,

then it is highly likely that many such cases could be attained. In such a situation the

design space is characterized by either a large flat basin or many local minima that

all have the same minimum value. Again in one sense this does not pose a significant

problem since achieving any one of the multiple minimum states still implies that the

process has succeeded. However, if an airplane designer were asked to choose between

many such airfoils, all having zero inviscid drag, he or she is likely to have a preference

based on other aerodynamic or geometric properties. The main conclusion is that great

care must be given to the choice of the cost function.

5.2.2 VARIATION OF THE COST FUNCTION FOR THE INVERSE PROBLEM

Returning to the problem at hand, the cost function may be defined as

[ = -_ (p - pd) 2 d._ = -_ (p - pd) 2 d(, {5.8)
?

where p_ is the desired pressure. The design problem is now treated as a control prob-

lem where the control function is the airfoil shape, which is to be chosen to minimize

! subject to the constraints defined by the flow equations (5.5-5.7). A variation in

the shape will cause a variation, _p, in the pressure in addition to a variation in the
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geometry, and consequently, the variation in the cost function becomes

/_l = (P-- Pd)_P d_ d_ + -_ (p-- pd)2 (_ d_. (5.9)

5.3 VARIATIONS OF THE GOVERNING EQUATIONS

Following closely the development for potential flows, the next step is to determine how

a variation in the airfoil shape causes variations in both bp and b (_). Since p depends

on w through the equation of state (5.3-5.4), the variation bp can be determined from

the variation bw. Therefore the next goal is to develop the first variation of the steady

state governing equations in terms of _w. Define the Jacobian matrices given in

Chapter 2,

Of Og
A1 = 0w' A2 = /)w' Ci = Z jK_IAj • (5.10)

The relations for C i may be written out as

C1 =_ww J_x +_ww y ' c2 = _w J Ox] + _w \ Oy ]

Then the equation for _iw in the steady state becomes

• (_F) + _-_,j(_(;) = O,

,_F = Clbw+(_ ,l_x f+_ ,l g

(o,,) (o,;)_(; = C2bw+b .l_x f+_ J g.

where

(5.11)

(5.12)

5.4 THE ADJOINT VARIABLE

Now, multiplying by a vector co-state variable ¢ and integrating over the domain, we

have

NeT (0(,_F) 0(_;)Ji + o,---V-) : o
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If ¢ is differentiable, this may be integrated by parts to give

OCT 6 n + o,,

Note that integrals along the cut line (dT1) have been cancelled since an O-type mesh

and continuity of ¢, 6F, and 6G have been assumed. Because the flow variables do

not experience a jump along the cut line it was not necessary in the flow solution

methodology for the Euler equations to decompose the solution into components, as

was necessary for potential flow. Consequently, it will not be necessary to split the

adjoint development for the Euler equations as was necessary for the potential flow

adjoint equation.

Continuing with the derivation, after (5.13) is added to (5.9) the variation of the

cost function may be written as

_ (ds) 1 (d._)hi= (p-- pd)bp --_ d( + _ ?c(p-- pd)2 _ -_ d(

+ o¢T6G I d_d7I
F + 071 . }

F + n,_tb T6(;) d( - _(. (it(¢TbF + it,,¢ T6(;) d(

where it is recalled that bF and 6(; may be defined by (5.12).

(5.14)

5.5 BOUNDARY CONDITIONS AND THE ADJOINT EQUATION

It turns out that on the airfoil surface 6(; may be expanded in terms of bp directly

instead of 6w. Thus it follows from using equation (5.7) and also 6t' = 0 that

b(; = J

0

0i_x P

+p

0

(5.15)

0 0
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on the profile surface. At the outer boundary, incoming characteristics for ¢ correspond

to outgoing characteristics for 6w. Consequently, boundary conditions can be chosen

for ¢ such that

nn_bTC2_w = O. (5.16)

Thus, by using the fact that n_ = 0 and n,l = -1 at the profile and h_ = 0 and u,_ = 1

at the far field, combined with (5.15) and (5.16), equation (5.14) can be rewritten as

f+ d(dt#
JD \ O_ 0,1 ]

- {a_Jf+,+ t, oy/

/ o,i (a a,1] a,1

(5.17)

Then if the coordinate transformation is such that _ (Jh "-1) is negligible in the far

field, the remaining integral over B also drops out.

Now suppose that ¢ is the steady state solution of the adjoint equation

O_b ,T 01_ ,T 01_ _

Ot (1_-_-(2_-0 in D, (5.18)

where the minus signs are a result of the reverse biasing of the equations. Then by

letting ¢ satisfy the boundary condition,

['.1. 071 .I. 071) d._J _ _/2_--_z + '_3_yy = -(P- Pd)_ on (',

equation (5.17) may be written as

_I=
,(P-Pa)26 d-_ d_

+ /. t -bT

(5.19)
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+

+

1 d._

(5.20)

It is noted that the application of equation (5.19) for this system, unlike the correspond-

ing equation (4.17) for the potential flow formulation, is not straightforward. Various

aspects of the discretization of both (5.19) and (5.20) will be discussed in Chapter 7.

5.6 ALGORITHM OUTLINE

Again the relatively simplified form of the final expression for the variation in the cost

function (5.20) allows for its straightforward evaluation:

1. Solve the flow equation at the initial point according to Chapter 2.

2. Solve the adjoint equation

subject to

a¢ ,,T0¢ ,TOe
Ot _.1-_-_ - ( 2 -_71 = 0 inD,

[._. 871 071"_ ds
.i + = -(t,-

¢ periodic along the cut line, and

on (',

¢ satisfying matching conditions at the outer boundary defined by (5.16).

3. Solve for the b(metric) terms in (5.20).

4. Calculate the gradient G or a specific variation bl using equation (5.20).



Chapter 5 Control Theory Applied to the Euler Equations 114

The method of solving the flow variables has already been discussed in Chapter 2. The

evaluation of the _(metric) terms as well as the specification of the design variables is

addressed in Chapter 6. The details of the discretization and solution algorithm for

the adjoint equation will be treated in Chapter 7.

5.7 DISCONTINUITIES

Here, as was the case for the potential flow equation, problems may arise when jumps

appear at the boundary due to shock waves. Conveniently, techniques used to treat

such problems can be quite similar for both equation sets. For the current Euler for-

mulation, both the implicit smoothing (Section 4.11) and the shock wave unweighting

(Section 4.12) can be used.

5.8 OTHER COST FUNCTIONS

The similarities between the potential flow formulation and the Euler equations also

extend to the implementation of other cost functions. Probably the most important

trait of using control theory is the easy way in which alternative or combined objective

functions can be treated without incurring additional computational costs. Other-

wise, if the goal of this work were simply to construct inverse design methods, the

sophisticated development treated here could be completely avoided by using the more

traditional inverse methods outlined in Chapter 1.

5.8.1 DRAG

To use drag as a cost function for the Euler formulation, much of the same development

as in the case of drag for the potential flow formulation can be repeated. In fact Section

(4.13.1) can be entirely duplicated from its beginning up through equation (4.28):

= cos _ - sin _ + _ cos ,_ + sin n d(

1 [(_0y) ) )]\ O_] + _ \-_) sin ,_ ,t,_
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(5.21)

where

[C, + _ cos,_ + _ sin_]
f 1 B

[-C4 + _ cos _ - _ sin cdj

It is then possible to replace (5.20) by

6I=
1

(5.22)

Implicit in (5.22) is the fact that the boundary condition at the surface of equations

(5.19) is replaced by

' 0,1

1 0 [(0_ cos, - sin, + a cos, + sin,, d_. (5.231

5.8.2 LIFT OVER DRAG

A parameter that is often used in aerodynamic design is the lift to drag ratio. From

basic aerodynamics, the maximization of lift/drag at a fixed Moo and specific fuel con-

sumption maximizes cruise range. If the weight, and hence the C_, is also constrained,

the problem reduces to the one just explored in which drag is minimized at a given

('1. However, it may be of interest to obtain the maximum lift/drag for a given _. To

maximize (:l/('d, its inverse ('d/Cl is minimized. Thus, the cost function is defined as

1 = Cd/Cl.

The variation becomes
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66', cos a + 6C,_ sin
Cd [_C,, cos,_- _C. sin_]

('t C 2

+ _ - ('_ sin o + C,_ cos a __ __("d , ,

Cl C 2 [-( '_sin o - (_ cos a]j baL

S_ coso+ _ sin.+
L

I

('t

For the fixed a case, the last two terms with 6a drop out, giving

61 - i z 6p
gTM_c

d_ sin aCOS Or --

d. sin a
1/c 6(d-_)COSo--6(_)_MLc P (:, + C-'-'_t('d @ ( _ ) cos a + 6 ( _ ) sin _ ) ] d(

The boundary condition for the adjoint equation using this cost function becomes

{._. 071 . 07l\  'sino+ )coso- _ c_ _cosa+ sina

17 M2cCt
on ('. (5.24)

The final expression for the first variation in the cost function may be written as

61= i 2 P
_TM_ _"

cosc_-6 7( sinc_

+('_

w

(5.25)

Just as in the case of the potential flow formulation, any combination of the above cost

functions can be weighted and summed to create a combined objective function. The

possibility of prescribing field-based objectives such as minimizing entropy production

also exists but is not explored here.
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5.9 SECOND ORDER DESIGN METHODS USING THE EULER EQUA-

TIONS

As a final note, the development here to obtain 5I via an adjoint method could be

adjusted such that it would provide _21 and hence the Hessian matrix. This was

suggested in Section (3.7) of Chapter 3 and is explored as a general development in

Appendix AI. To give a greater understanding of how such a technique could be used

in conjunction with the continuous sensitivity analysis method, Appendix A2 develops

a second order full Newton method for the case of the Euler equations. Although the

method will not be implemented in this work, the basic approach is clear. Furthermore

much of the hard work of building an adjoint solver for the Euler formulation that

is contained in this thesis could in fact be reused in such an approach since the

main element needed for the second order method is the solution of the same adjoint

equation.
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Chapter 6

GRID PERTURBATIONS AND DESIGN

VARIABLES

This chapter contains two distinct parts. The first establishes a general grid pertur-

bation method used to calculate efficiently the needed grid variational terms in both

equation (4.19) and (5.20). The second section defines two possible families of design

variables which are tested in this work.

6.1 GRID PERTURBATION METHOD

Equation (1.6) restated here,

OI T OI T Ol T

contains variations in the flow field variables (6 w), variations in the grid point locations

(tA'), and variations in the surface (6_r). Chapters 4 and 5 developed techniques to

eliminate (_ u,) from the variation in the cost function resulting in equations (4.19) and

(5.20). These equations are the specific forms of the more general expression (1.12).

Thus with the solution of the adjoint equations in hand, the only remaining variational

terms are 6,1' and _-. It is helpful here to restate the final forms presented in Chapters

4 and5:

For the potential flow formulation:
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For the Euler equations formulation:

_I=

(6.1)

+

+

(6.2)

In both cases the first terms are surface integrals which involve only variations in

functions containing surface locations. These integrals are thus functions of Syr, which

for a particular design variable can be calculated directly for insignificant computa-

tional costs. That is, the contribution to expression (1.12) from these surface integrals

in both (6.1) and (6.2) can be evaluated by calculating only the _9c terms by finite dif-

ferences. No calculation of _A" is necessary since it is not required. However, the last

term in each case is a volume integral over the domain that also contains variations in

grid point locations. These variations in the mesh metric terms unfortunately require

complete knowledge of subsequent meshes.

One way to obtain these variations is by using an existing grid generation algorithm

and applying finite differences to calculate the necessary information. While this ap-

proach would still obviate the use of multiple flow solutions to determine the gradient,

it would require the mesh generator to be used for each design variable to form the

finite difference approximations for the variations of the mesh metrics throughout the

domain. Thus, the number of mesh generations required would be proportional to

the number of design variables. And since flow solutions are typically much more

computationalty expensive than the grid generation, such an approach should ensure

a significant savings over using finite differences for both grid generation and flow

solutions. For three-dimensional design, however, where both the number of design

variables and the computational cost of grid generation can be high, this approach
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would be excessively expensive. Further, for complicated three-dimensional configu-

rations, where automatic grid generation still does not exist, such an approach becomes

impractical.

This motivates the need to find a method which bypasses these difficulties. Here,

the cost of repeated grid generations is removed from the gradient calculations by

using a grid perturbation method. In this method, which was also used by Burgreen

and Baysal I11 ], an initial structured curvilinear body-fitted grid is first created for the

initial configuration by any grid generation process that may or may not be automated.

Thus, the geometry as well as this initial grid become inputs to the optimization

process. New grids, which conform to the surface as it is modified, are generated by

shifting the grid points along each grid index line projecting from the surface. The

points are shifted in real space by amounts that are attenuated proportional to the

arc length away from the surface. If the outer boundary of the grid domain is held

constant, the modification to the grid has the form

y,_,._,, : yOtd + _ (y,,_,, _ y.:td) , (6.3)

where x and y represent the interior grid points, and xs and ys represent the surface

grid points. _ represents the arc length along the surface-projecting mesh line mea-

sured on the original grid, from the outer domain, and normalized so that 7_ = 1 at the

inner surface.

The implications of using this type of grid perturbation scheme, that admits the

possibility of crossed grid lines for large perturbations, are as follows: First, with re-

spect to gradient calculations, analytic treatment of equations (6.3) permits the direct

evaluation of grid variations (hA') in terms of the surface variations (b J-). The result

is that the volume integrals in both (6.1) and (6.2) may be reduced to surface inte-

grals that depend only upon variations in 5r. They may thus be treated inexpensively

with finite differencing of 5v for each design variable. Second, since no regridding is

required to calculate hi, the issue of possible crossed grid lines never arises for the

gradient evaluations. Finally, with respect to line searches, where new grids must still
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be explicitly calculated, the method should only be employed when grid lines do not

cross. If singularities begin to develop in the mesh, a secondary smoothing technique

can be used to create new grids. In practice, the grid perturbation method has proven

to be robust, and no failures due to singularities have occurred during optimization of

typical convex geometries. To complete the analysis, the linear dependence of these

perturbation equations must be extended to specific requirements for both the Euler

and potential flow formulations.

6.2 DEVELOPMENT OF GRID VARIATIONS FOR THE POTENTIAL FLOW

EQUATION

Examining equation (6.1) reveals that the dependence on the mesh variations is con-

tained in the final volume integral through the terms (_ and _5, which from Chapter 4

are

Q(bJ, 6All,bA12,SA22)

P(6J, bAll, 6A12, _6A22 )

pU6J

+pJO( (1 I/0(2c 2 / /_All

+PJ¢,I (1 UCec2 ) (_A12

+PJO,, [{ _t0v _ _A22
k

pV6J

+P.]O,, (1 VO,'_

+PJO_ (1 VO,'_e2 ] _ A12

+pg0( (- 2c 2 ] ball.

Thus, it is clear that the volume integral in equation (6.1) requires the variational

terms tJ, 6All, hA12 and 6A22. However, since we have an analytic expression for new
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grids in terms of an initial grid and surface perturbations, it is possible to construct

these required variational terms such that the volume integral may be reduced to a

surface integral. Consider first the term _J. It is realized that equation (6.3) may be

written in variational form as

by(_,T]) = _(7/)6y_(_) (6.4)

where tx, and ty, are defined on the airfoil surface. Thus we may write,

(6.5)

Recalling that .! is defined as

Ox Oy Ox Oy
J = det [h"I - O_ 07] 87] 0_

enables us to determine the first variation of the mesh Jacobian as

_J-
O( x)Oy OzO(ty) O( x)Oy OxO( y)

+
O_ 07_ O_ 07/ 071 O_ 071 O_

Substituting in equation (6.5) shows that

L a,i 05
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or

The other necessary metric

and

_'_ L "_J

,_ L _,_J

+_y_ ['_ o_]

=_

+bx_J3

+by, J4

variations follow similarly. Recall that

A = K-1A "T-] = [ All A12 ,
A21 A22

_)2 2
_n J

All _-
j2

(6.6)

j2

A22 --
j2

The first variations are,

j3
J + 2 '"'

.12

j3 ,]2

6A22 = -2

[r_ _ ,'_,_-_1 [_,_, +_(_
k,_¢) + k_) J_J+2 :":'

j3 j2

)]

Substituting in the ex

ball :

)ressions (6.5) gives,

+_ [+2_,____!._T_]

%-7 _ _ ,;'_,_j

/
I=

All_

+_a,,

+_XsAll3

+SysAll_
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5A12 =

[-___A__ _ a_l

[+2__L_m,'_7__r__,_I+ a_ L Y _ f_a,_j

0( .Lzl

+_x.¢A123

+6ysA124

¢3(6x,) [-2A22 _-'_ Ox

, _ a_R. 2_1 ' _A-_
J- 3( [ +2A22

hA22 : : , (6.7)

+6xs [+2A22 _ 0hi +bxsA223

[ -2______ax aR l +_ysA224+_ys L J _ _-_J

where the J and A, terms are introduced to ease the algebra. Thus, after the solution

to the adjoint equation has been calculated, the contribution to the volume integral

in the 7/direction can be evaluated without regard to any design variables. These

variation-independent integrals have the form,

{p[UJ,+J¢(( 1-(''O(nc-/W-ri--_A''+JO, (1-_)A_2 +J¢,_(-%--_)A2._] 0_'

(6.8)

where i = 1 • 4. It follows that _" is a function only of G and the expression (6.1) for

I can be reduced to

+ + + < (6.9)

Equation (6.9) is in the form where only terms that are related to surface variations

(hU) are present, and the dependence on the variations of the field grid points (hA')
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has been eliminated. This enables evaluation of equation (6.9) by finite differences for

each design variable in turn at a very low cost.

6.3 FINAL DESIGN ALGORITHM FOR POTENTIAL FLOW FORMULATION

The complete design algorithm using the potential flow equation as the field constraint

is outlined below:

1. Solve the potential flow equation according to Section (2.4).

2. Smooth the cost function (Section 4.11) or unweight the shocks (Section 4.12) if

necessary.

3. Solve the adjoint equation (4.16) subject to boundary conditions such as (4.17),

(4.22), (4.31) or (4.32).

4. Solve for Xv, by equation (6.8).

5. Determine the gradient:

• Perturb each design variable and evaluate equation (6.9).

• Construct each component of the gradient by dividing by the perturbation

of the corresponding design variable.

• Assemble the gradient vector.

6. Feed the gradient vector _ to the quasi-Newton algorithm (3.21) to calculate the

search direction s.

7. Perform a line search in s according to Section (3.6) and estimate the minimum

by repeated flow solver evaluations.

8. Return to (1).

The only undefined portion of the above algorithm is the choice of design variables,

which is treated in Section {6.6). Since the procedure employed in this research is

a continuous sensitivity approach, the details of the discretization of the differential
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adjoint equations as well as their solution procedure must be defined. Chapter 7 treats

these important aspects.

6.4 DEVELOPMENT OF GRID VARIATIONS FOR THE EULER EQUATIONS

Just as in the case of the potential flow formulation, the final area integral in equation

(6.2) is a function of the variation of the mesh metrics. To avoid recomputing the entire

mesh for each design variable to obtain these metrics, the analytic mesh perturbation

equations (6.3) may again be exploited. It turns out that the necessary variation

terms for the Euler equations given in (6.2) are considerably simpler than those for

the potential flow equation, and are given by (6.6) and (6.7).

It is convenient to rewrite (6.2) after integrating by parts as

if6I = _ (p- pd)2,_ ds d_
?

where f and g are again the flux components f and g with the pressure terms deleted

from the momentum equation. And since the flux is set to zero across the airfoil

surface, this second integral drops out resulting in the expression

_I=

0 (,_ (___)f+6 ('_)g)d(d,,. (6.11)

Fortunately the necessary metric variations in (6.11) have already been developed

for the mesh perturbation algorithm defined in Section (6.1). They were needed in

an intermediate step for the development of the necessary metric variations used in
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the potential flow formulation and were given by equation (6.5). Again following the

approach used for the potential flow formulation, we may substitute these expressions

into (6.10) and integrate the second term along the index direction projecting from

the configuration surface without any dependence on particular design variables since

the metric variations are fully determined by the surface perturbations. Thus, the

expression for the variation in the cost function can be reduced to surface integrals

only:

where

_I=

" _3 A54 d_
' $ $

(6.12)

A,:, = f w o of

, f_ , or og d,i_2 = T 07! O_

, f T Of_%3 = -¢ re-_7I dTi

A,",,, = rjwTTeOg d71- (6.13)
0T/

Equation (6.12) has reduced the expression for tl into line integrals along the

surface where the only remaining unknowns are the surface variationals. As with the

potential flow method, these surface variationals may be easily determined for any

modification in the surface using finite differences.

6.5 FINAL DESIGN ALGORITHM USING THE EULER FORMULATION

The complete design algorithm using the Euler equations as the field constraint is

outlined bellow:

1. Solve the Euler equations according to Section (2.5).

2. Smooth the cost function (Section 4.11) or unweight the shocks (Section 4.12) if

necessary.
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3. Solve the adjoint equation (5.18) subject to boundary conditions such as (5.19),

(5.23), or (5.24).

4. Solve for A#, by equation (6.13).

5. Determine the gradient:

• Perturb each design variable and evaluate equation (6.9).

• Construct each component of the gradient by dividing by the perturbation

of the corresponding design variable.

• Assemble the gradient vector.

6. Feed the gradient vector G to the quasi-Newton algorithm (3.21) to calculate the

search direction s.

7. Perform a line search in s according to Section (3.6) and determine the minimum

by repeated flow solver evaluations.

8. Return to (1).

Thus the complete design algorithm has been defined for both formulations. Each

design method has been defined as a general procedure from the continuous sensi-

tivity stand point. Various cost functions or combinations of cost functions can be

treated within this context. The fact that a continuous sensitivity approach is used

forces a detailed description of the discretization and solution strategy for the adjoint

equations. This description is addressed in Chapter 7. The remainder of this chapter

will be dedicated to the open issue remaining in the above list--the choice of design

variables.

6.6 DESIGN VARIABLES

The advent of new adjoint-based design procedures, such as the ones explored here,

will force a reconsideration of other aspects of the aerodynamic design process that

heretofore have been quite entrenched. The conclusion of this work (Chapter 10) will
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try to illuminate some of these necessary reconsiderations. However, one aspect which

cannot be left solely to future examinations, and without which this research would

be incomplete, is an exploration of possible design space parameterizations.

6.6.1 MESH POINTS AS DESIGN VARIABLES

In Jameson's first works on the use of control theory {54, 55, 59], every surface mesh

point was used as a design variable. For three-dimensional wing design cases this led

to as many as 4,224 design variables [59]. The use of the adjoint method eliminated

the unacceptable costs that such a large number of design variables would incur for

traditional finite difference methods. Theoretically, this choice would give the ultimate

freedom in possible design shapes permitted by the resolution of the mesh. The ap-

proach does present some difficulties. First, even though the gradient is well defined

by this choice, it is quite probable that it will not be smooth or may even have discon-

tinuities. The problem is best exemplified by using the case where only one grid point

is used as a design variable, with the rest of the grid points being fixed. Not only will

the predicted change from the adjoint-based gradient have little chance of matching

the actual change for any except infinitesimal variations, but the flow solution process

may itself become ill-conditioned. Motion of a single point violates the (,2 continuity of

the surface that is usually necessary in order to obtain smooth solutions. The resulting

flow solutions from single point motion, if even attainable, would have at least slope

discontinuities. This contradicts the development of the adjoint formulations, where

continuity in the 1st derivative of the solution was assumed throughout.

At the very least, mesh point-based design variables create a situation where the

solution of the adjoint equations only provides a gradient that is compatible with in-

finitesimal changes. The process is analogous to that of using a simple explicit time

marching solution to solve a system of coupled equations. While the predicted correc-

tions may be accurate for infinitesimal time steps, these methods have a finite stability

region. The simple forward Euler scheme is unstable, for example, for purely hyper-

bolic systems. Jameson, who introduced the use of continuous sensitivity analysis

for transonic flows, realized this even in his first works I55, 58] where the surface
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mesh points were used as design variables. Following his own developments to stabi-

lize the solution process of explicit Runge-Kutta type algorithms by implicit residual

smoothing, he used a similar approach to smooth the gradient. After the procedure,

the smoothed gradient defines a new search direction in which a significant step can

be taken without developing problems in the flow solution algorithm since all result-

ing shapes developed along this direction are insured to be smooth. He proved that

the smoothing algorithm employed for the gradient still ensures that an improvement

must exist in the new search direction. While the method has been successfully demon-

strated for a wide variety of design problems, it is sensitive to the level and character

of the smoothing used.

Another way to understand the problem associated with using each grid point as a

design variable is that this design parameterization admits very high as well as low

frequencies into the shape of interest. This admittance of high frequencies into the

design space will in turn allow it to be characterized by a higher degree of nonlinearity

(i.e., valleys and canyons with steeper walls and more of them). In theory, a global

optimum in this high frequency design space could still be found. This minimum would

then necessarily have a lower value of the objective function than a design space for the

same problem that was resolved with only lower frequencies. Unfortunately the degree

of nonlinearity that would be admitted into the design space is such that finding the

minimum is likely to become computationally difficult, with the use of simple gradient

methods resulting in outright failure. Jameson's way out of this difficulty was to

smooth the gradient and hence the local design space by using in effect a low-pass

filter.

If the use of mesh point design variables were extended to treat complete aircraft

configurations, at least tens of thousands of design variables would be necessary.

Extravagant numbers of design variables preclude the use of descent algorithms such

as Newton or standard quasi-Newton approaches simply because of the high cost of

the associated matrix operations. The use of a simple descent procedure, such as

steepest descent, has the advantage that significant errors can be tolerated initially in

the gradient evaluation.
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Mesh point-based methods therefore favor tighter coupling of the flow solver, the

adjoint solver, and the design problem to accelerate convergence. Ta'asan et al. [71}

have taken advantage of this by formulating the design problem as a "one-shot" pro-

cedure where all three systems are advanced simultaneously, through a multigrid

algorithm. Essentially, each level in the multigridding of both the flow solution and

the adjoint solution develops different solutions and hence different gradient infor-

mation. Ta'asan et al. have attempted to capitalize on this property by relaxing the

gradient information developed in each step of each multigrid level through a simpli-

fied optimization step in these transient gradient directions. In Jameson's original

works, the numbers of complete multigrid steps for the flow solver and the adjoint

solver are adjusted to give optimum results. In the limiting case where only one step

is taken, the scheme is very similar to that adopted by Ta'asan.

6.6.2 HICKS-HENNE FUNCTIONS AS DESIGN VARIABLES

An alternative choice of design space that leads to quite different conclusions for the

optimization algorithm was proposed by Hicks and Henne [39, 37]. In their parameter-

ization of the design space, a set of smooth functions that perturb the initial geometry

are defined. The main result is that far fewer design variables are needed to provide

for an adequately open design space. Hicks initially adopted the approach because his

work in the past exclusively used finite difference-based gradient design methods that

are inherently restricted to a few dozen design variables. As a consequence of the fact

that these early methods had to content themselves with at most a hundred design

variables, they retained considerable freedom in the choice of the descent algorithm.

One choice of design variables for airfoils suggested by Hicks and Henne [38 ] has the

following "sine bump" form:

b(x)= sin wx_ , 0_<x_< 1

Here tl locates the maximum of the bump in the range 0 < x _< 1 at x = tl, since the

maximum occurs when _ : _, where 5 = log _/logtl, or 61ogtl = log ½. Parameter

_2 controls the width of the bump.
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When distributed over the entire chord on both upper and lower surfaces, these an-

alytic perturbation functions admit a large possible design space. They can be chosen

such that symmetry, thickness, or volume can be explicitly constrained, thus avoiding

the use of constrained optimization algorithms to address geometric constraints. Fur-

ther, particular choices of these variables can concentrate the design effort in regions

where refinement is needed, while leaving the rest of the airfoil section virtually undis-

turbed. The disadvantage of these functions is that they are not orthogonal, and there

is no simple way to form a basis from these functions which is complete for the space

of continuous functions that vanish at x -- 0 and x -- 1. Thus, they do not guarantee

that a solution, for example, of the inverse problem for a realizable target pressure

distribution will necessarily be attained. Nevertheless, they have proved to be effec-

tive in realizing design improvements when only a limited number of design variables

can be admitted. A design process using these basis spaces can be accelerated toward

convergence either by tighter coupling of the individual design elements, as was the

case when using the mesh points themselves, or through the use of higher order op-

timization algorithms. The Hicks-Henne functions also have one last advantage over

using the mesh points in that there is no need to smooth the resulting solutions as the

design proceeds, since by construction higher frequencies are not admitted and thus

the design spaces are naturally well posed.

6.6.3 B-SPLINE CONTROL POINTS AS DESIGN VARIABLES

Another choice of design variables that has gained favor is the use of B-spline control

points, most recently through the work of Baysal and Burgreen [11 ], and others [108].

Instead of applying perturbation functions to existing airfoils, this method starts with

an initial airfoil which is analytically defined as a B-spline curve. The design is

accomplished by directly modifying the analytic curve via its control points.

To understand this it is helpful to outline B-splines, or rather B_zier curves which

form their underlying basis. Consider a set of control points I_o°, b °, b_ b _

b,_, representing 2-space coordinates. A B_zier curve can be constructed through de
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Casteljau's algorithm:

(

i_i( _ = (1 -t)Bi-l(f)+ t_+_({) _ j : 1,...,m

[ i = 0,...,71, - j

where m is the degree of the polynomial. For the simple quadratic case with only three

control points (b °, by, b_), the algorithm results in:

Bo (h= (1-

bl(f) = (1-t)b°(f)+tb°(t)

b2o(t) = (1 - i)bol(t) + tbl(t ). (6.14)

Thus, (6.14) defines a curve which spans 2-space between l_o° and B° through the

Figure 6.1: Bdzier Curve of Degree 2

variation of the non-dimensional parameter _. Figure (6.1) illustrates such a curve

and its geometric construction. The degree m of the B6zier curve is one less than

the number of control points. As with any polynomial representation, higher orders
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eventually become computationally unmanageable, with 10 being a rational limit.

Unfortunately, a reasonable number of control points (20+) is required to give an

airfoil the needed geometric freedom. To overcome this difficulty, B-splines curves may

be constructed as piecewise B_zier curves. These have the advantage of limiting the

degree of the polynomial to a manageable user-defined level, while still maintaining the

analytic representation for the surface shape. A complete development and treatment

of B_zier curves and B-spline curves is beyond the scope of this research but can be

found in reference [20]. The important aspects concerning the use of B-spline control

points as design variables for aerodynamic design can be explored without a detailed

presentation.

Like the Hicks-Henne functions, B-splines allow for a reduced number of design

variables, and thus permit the use of, say, a quasi-Newton design procedure. If the

upper and lower surfaces of an airfoil are separated, the method easily admits camber

or thickness constraints explicitly within the design space. To explain this it should be

noted that the polygon defined by the B-spline control points 1 forms a general outline

of the airfoil defined by the curve. Further, as more control points are included in

the definition of the curve, the closer this correlation becomes between the control

point polygon and the curve it defines. Thus for an airfoil defined by many control

points, the vertical distance between corresponding control points on the upper and

lower surfaces roughly defines the thickness distribution. Local control is also possible

by choosing only a limited number of control points as active design variables. This

method in practice may have an advantage over the Hicks-Henne functions in that a

more complete basis space of admitted airfoils is permitted with the same number of

design variables. Finally, since these curves and surfaces are now the natural entities

used in most CAD environments, they provide a straightforward way of integrating

CAD and aerodynamic design.

One possible drawback of B-spline-based design variables has already been hinted

at. The fact that B-spline curves are nothing more than a patched set of polynomials

1The B-spline polygon is defined by sequentially connectingthe B-spline control points.
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means that the degree of these polynomials may dramatically affect their performance.

For applications to airfoils, it seems necessary to use B-splines of at least degree 3

which ensures C 2 continuity of the resulting curve. It is perhaps desirable to use

even higher polynomials, since the primary aerodynamic state variable of interest,

pressure, in subsonic flow is a general function of the curvature (C 2) of the airfoil

shape. Smooth pressure distributions thus require smoothness in the curvature of the

airfoil, or C 3 continuity. This leads us to another possible problem with these design

variablesmnamely that since piecewise polynomials of at least degree 3 are being used

with a fair density of control points so as to capture a large possible family of airfoils,

surface shapes containing high frequency modes are again possible, just as in the case

of grid point design variables.

The results to be presented in Chapters 8 and 9 will explore the use of both Hicks-

Henne perturbation functions and B-spline control points. This is by no means a

complete treatment of design variables, but gives an introduction to how important

the problem of parameterizing the design space will become in the future as adjoint-

based approaches decouple the cost of design from the number of design variables

used.
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Chapter 7

ADJOINT DISCRETIZATION AND

SOLUTION PROCEDURES

The mathematical development of a control theory approach to airfoil design is now

complete for both a potential flow and an Euler formulation. However, since this

research employs continuous sensitivity analysis as opposed to discrete sensitivity

analysis, details of the discretization for the two different adjoint systems must also

be outlined. Also, regardless of whether a continuous or a discrete implementation of

control theory is applied, the solution methodology for the large scale adjoint systems

must also be discussed. As stated in the introduction of this research, one important

advantage of the continuous sensitivity approach is the ease of recycling the flow

solution methodology for the solution of the corresponding co-state system. In this

chapter, the details of the discretization and solution strategy for both co-state systems

will be described.

7.1 DISCRETIZATION OF THE POTENTIAL FLOW ADJOINT EQUATION

For the potential flow equation, Section (2.4) describes the discretization of the domain

equations and their associated boundary conditions. Recall that the potential flow

equation in differential form was given by

i) (pJIT) + 0
j--_ _-_](p./V) = 0 in l),

(7.1)
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and that its discrete counterpart including artificial dissipation was

The potential flow adjoint equation in differential form developed in Chapter 5 is given

by

-_ pJ All - _ _ -t- pJ A12 c2 ]

0 04, OTi]+ _ pJ A12 - _ _- + pJ A22 = 0. (7.3)

The object now is to construct a discrete scheme for (7.3) that is consistent. While

equation (7.3) seems more complicated than (7.1), it is simply an expansion of (7.1)

due to the linearization. Referring back to the original stencil depicted in Figures

(2.1) and (2.2), ¢ was assumed to be defined at the mesh points while p, J, U, and t'

were calculated at the cell centers. Equation (7.2) was then constructed by using the

secondary control volume shown in Figure (2.2). To maintain this basic structure, the

following discrete scheme is used:

This implies that _',, like 0, is defined at the mesh points and the terms pJ (All - _),

pJ (A12 ,,v (A22 _) are- 7), and pJ - calculated at the edge centers. Note that no

artificial viscosity or difference rotation terms have thus far been added to the scheme.

7.2 DISSIPATION USED FOR THE POTENTIAL FLOW ADJOINT EQUA-

TION

As it turns out the choice of the discretization in (7.4) is a simple finite difference stencil

for (7.3). Most notably the average operators in (7.4) do not encompass the differences

in v,. This is different from the stencil used for the flow equations, where motivated
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by the desire to preserve a conservative scheme, the averages essentially operated on

the differences in ¢. This switch in stencil type from the one used in the potential

flow equations has the consequence that no difference rotation terms need be added

to prevent odd-even decoupling in the solution since, ignoring cross derivatives, (7.4)

is already in the form of a standard five point scheme. However, artificial dissipation

of the form used in the flow equation is needed. For the flow equations, the artificial

dissipation terms were given by equations (2.20). These may be duplicated for the

solution of the adjoint equation with a change in the direction of upwind biasing to

reflect the reverse flow character of the adjoint system. Thus,

f) - pJ

" _ PJ (frl,'_i,_,_ + 1;2Q_, = P_v _/",_)'

and P_, and Qz, can be calculated at the cell edges by

-['_',+l,, if I r > 0PV'.+_,, = [, if (; < 0

-Q_,..,+_ if t" > 0
= (7.5)

Q_"'_+½ O_,,.., if v < o.

This would also closely approximate what would happen in a discrete sensitivity anal-

ysis method, where the switch in the biasing is contained in the transpose operator

on the flux Jacobian. The entire discrete scheme for the adjoint equation may now be

written as

_( [I)( (D'] (All e2 ]) _(_""JF f",, (P g _-,]) (_7_

+ _ (t'_.,) + _,, (Q_,) : O. (7.6)
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7.3 ITERATION SCHEME FOR THE POTENTIAL FLOW ADJOINT EQUA-

TION

With (7.6) defined, a convergent iteration scheme must be constructed. It is possible

to create this iteration scheme for the adjoint solver by using the flow solver iteration

scheme as a template. Equation (2.24) rewritten here in terms of the adjoint variable

is used as the basic solution procedure:

(7.7)

Fortunately, this generalized ADI scheme can be reused for the solution of the adjoint

equation with only minor modifications. In order to remain consistent with the reverse

flow nature of the adjoint system, the ADI scheme is swept in two parts from the

trailing edge forward in the _ direction. Further, the 7/sweep is run from the airfoil

surface out toward the outer boundary. This is exactly opposite to the directions used

for the flow equations.1 As previously stated, the one-sided differences incorporated

into Z are forced to have upwind biasing consistent with the sweep direction. 2 This

choice of the difference stencils and the sweep directions favorably influences the

convergence of the iteration algorithm since consistency is maintained with the choice

of the biasing of P_, and Q_,, in the supersonic regions of the flow. The boundary

conditions specified by (4.17), (4.22), (4.31) and (4.32) are treated by standard finite

differencing. It will be noted that this simplified treatment for the wall boundary

condition of the potential flow adjoint equation will not carry over to the case of the

Euler adjoint equation. The treatment of the remaining adjoint boundary conditions

at the cut and far field are straightforward since they are periodic and explicitly zero

respectively.

1See Chapter 2

_See section 2.4.4.
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7.4 CONVERGENCE ACCELERATION OF THE POTENTIAL FLOW AD-

JOINT EQUATION

Just as in the case of the flow solver, the ADI iteration scheme for the adjoint equa-

tion displays only marginally acceptable convergence performance. To enhance the

performance of the scheme, the same multigrid acceleration algorithm used for the

flow equation is recycled. Section (2.4.5) described how the multigrid algorithm was

applied to the flow solver. No changes are required for its reuse in the solution of

the co-state system. In fact in the actual implementation, both the flow solver and

the adjoint solver share common subroutines for the treatment of all the necessary

multigrid operations.

7.5 DISCRETIZATION OF THE EULER ADJOINT EQUATION

The discretization of the potential flow adjoint equation was done for both the domain

and boundary conditions without regard to how consistent this discretization was with

that obtained by discrete sensitivity analysis. And as the solutions in Chapter 8 will

illustrate, this implementation results in acceptable results. Unfortunately, these

consistency issues prove more demanding of attention when the Euler equations are

considered. This section will illustrate the differences that can exist between various

discretizations for both the adjoint domain equations and their associated boundary

conditions.

The conservative discretization used for the solution of the Euler equations was

presented in Section (2.5). Recall from equation (2.29) that the integral form of these

equations may be written as

d-t. w dl2 +

The semi-discrete equivalent was written as

dt

F. ndS = 0. (7.8)

/ 1 ,+ 1 ;+ \ 1 ,
+ L_G_.)+I + _C W) (-2(':¢ 1 ,- (7.9)
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Meanwhile the adjoint differential equations for the Euler formulation were given by

(5.18) as

+ +JN (7.10)

The main difference between (7.10) and the corresponding flow equations, (5.5),

014' OF OG
- - 0 (7.11)

Ot O_ 0_1

is that (7.10) is a linear equation which is not in strong conservation form. The most

straightforward discretization of (7.10) is written as

( j O_l Of "r Oq T)

7w ) ,,J

( of_ T
where k,_ ]

(l_+l,J - 21¢/-1,J)

1 _b,,j_l), (7.12)(1¢i,j+1-- _

ag are defined in Section (2.5.2). Equation (7.12), which willand (aw) T

later be augmented with dissipation, will be used as the primary discretization of

the domain equations for the Euler adjoint and is referred to as the Type 1 fluxes.

However, before proceeding to the development of the artificial viscosity terms and the

necessary boundary conditions, it is beneficial to determine how different this is from

the analogous discrete sensitivity stencil. A superficial examination of(7.12) indicates

that a slight difference must exist, because (7.12) does not contain terms for ¢i,j on

the right hand side, irrespective of the physical mesh used, while (7.9) is a function of

w,,j in all but a Cartesian mesh. Therefore, if the transpose of the linearized form of

(7.9) was obtained, it would necessarily include ¢,,j.

The first step in determining the formulation necessary for the discrete sensitivity

analysis is to develop the delta form of (7.9). For steady state solutions, the fully

implicit, discretely equivalent flow equation for (7.9) may be written, again without

artificial viscosity, as

1( )
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1

( (II )/)_ 1 Of :w"3 + _WW _Wi-I'J

1 0g

+
J_),,j+½ _ _w ,,j+l tw_'J+l + 7ww i,j

07/ 1

- V ou;_,j_½2 7ww,,j 7ww ,,j_

= _{(lr+ i + lrLI,_)

/1 ,+ 1 ;+ 1 ; 1(;_
+k_('W+l+_(i,;)-(_(_,j+_ ij-1]}" (7.13)

Equation (7.13) is simply Newton's method applied directly to the discrete system of

equation (7.9). Its solution would be identical to solutions from any other procedure

for solving (7.9). Now using the linear algebra steps presented in the introduction,

(1.7-1.9), it follows that the discrete sensitivity discretization of the adjoint equation

is given by taking the transpose of the right hand side of(7.13):

{( 0'(_ [OflT__ + (J ._-_f'] [Og]T} "¢_+1dd oxJ,+½,j LOWJiu \ Y/'+½u _ ,,J 2

(jo,,) [or1" ," o,,, [og1_}¢,,,+_.

{(_'"_ r,,,.1..,•+ }(_o,,') r°_1' _,.,_1
+ ,,, 0-;/<,__ LOwj<, \ Ou/,,__½ L_wwj<, 2
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+

Ol

Ow

,-½,j k Ox] cj+½ V oz / ,,j -5-

(7.14)

Equation (7.14) is referred to as the Type 2 fluxes. For use later, this equation is also

written as

2+ i_ i i _ OI

l_j _)i+i,j JC Mj _)i-1,3 + Mj+_)i,j+I + J_j_¢_,p-i + Mjl_i,j = - Ow'

,+ i_ , ' and ' have been introduced for conve-where the matrices vV[j , A43 , ._43+, A43_, v%4j

nience. By comparing (7.14) with (7.12) it is seen that the discrete sensitivity analysis

form is much more complicated than the Type 1 choice of discretization used for the

continuous sensitivity approach. Note that this new stencil is a function of ¢,,j, and

is clearly a more consistent representation if the goal is to obtain an exact match with

finite-difference gradients. However, due to the extra complexity of (7.14), its opera-

tional count and hence its computational cost will be higher. Chapter 9 will illustrate

some test cases using both discretizations for the Euler adjoint equation. As a final

note, it is realized that (7.14) is not a full discrete sensitivity analysis method since the

same linearization and transposition operations have not been applied to the discrete

form of the artificial dissipation as well as to the large number of very subtle bound-

ary condition contributions. No attempt will be made to realize such a full discrete

sensitivity analysis approach.

7.6 DISSIPATION USED FOR THE EULER ADJOINT EQUATION

Due to the absence of ¢,,j on the left hand side equation (7.12) permits odd-even

decoupling, and by itself it is ill-conditioned. The system must be augmented with

artificial dissipation just as was done for the Euler flow equations. The resulting
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discrete equations used in this research are simply

+

7"

1
-_- 07] (_ ',j+l 1¢

'3 2 '0-1)

(7.15)

where T_ has the same form as that defined in Section (2.5.3). Note that the sign of 7:)

is the same as that in equation (2.33) while the sign of the equivalent Q is the opposite.

This reflects the fact that the transpose operator does not change the sign of the 2nd or

4th order differences present in 2_, but does change the sign of the first order operator

in Q. The choice of augmenting (7.12) by _ without stepping through the integration

by parts that was required to obtain (7.12) avoids possible complications related both

to additional boundary terms arising in the system, and to the lack of self-adjointness

of D. To adhere to strict discrete consistency we would have to apply summation by

parts to equation (2.33). However, since _ is thought of as artificial in the first place,

the approximation taken here is consistent within the framework of the continuous

sensitivity approach.

T_ can now be written following Section (2.5.3) as

with

2 4
"Di,: = "Di,a - "Di,3,

v2 : -d2,o ,_ ,-_,j + d J+½ ,,a-_"

T_ 4 4 - d 4 - d4
',-_ = di+½,j i-_,s + d(4 1_,3+_ _,3-½ "

As an example of the terms on the right, the / + _ contributions are given by

' (<+=,,-a,0,+,,,+a¢,,,-,,_,,,): El+½, )

The dissipation that is applied to the fourth component of the ¢ vector is in this case no

different from the other components. For the Euler flow equations, the dissipation was
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applied to pH instead of pE = w4 for the fourth component. Other than this change,

all the same rules outlined in Section (2.5.3) are used to determine the coefficients of

_2 and E4, and hence the dissipation. This approximation amounts to assuming that

the dissipation is entirely self-adjoint at the discrete level.

7.7 ITERATION SCHEME AND CONVERGENCE ACCELERATION FOR THE

EULER ADJOINT EQUATION

For the Euler equations, the fact that a simple explicit scheme was used as the it-

eration algorithm for the flow solver makes it exceedingly simple to apply the same

algorithm for the adjoint solver. It was shown that things were not so simple for the

potential flow equation where a semi-implicit ADI method was used, and hence the

stencil of the approximate factors in the scheme, as well as the sweep directions, re-

quired adjustment. Without repetition the multistage Runge-Kutta-like time stepping

procedure as well as the method of calculating the local CFL numbers discussed in

Section (2.5.2) are reused here to solve the adjoint equations. Further, the convergence

is accelerated according to Section (2.5.4) by multigridding and residual smoothing.

Enthalpy damping is neglected because no simple total enthalpy analogy was derived

for the Euler adjoint equations in this research. This does not imply that such an

analogy does not exist. It will remain as an area of future research to try and develop

such an analogy and employ it to enhance convergence.

7.8 BOUNDARY CONDITION DISCRETIZATION

EQUATIONS

FOR EULER ADJOINT

Unlike the adjoint for the potential flow formulation, where the surface boundary

condition determines the value of a single scalar quantity with a single auxiliary

equation, the situation for the Euler adjoint formulation is more challenging. Four

components of the vector ¢ must be determined at the wall with only a single auxiliary

equation. This is identical to the situation for the corresponding surface boundary
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conditions for Euler flow solvers. The only wall boundary condition for the Euler

flow equations is the no-flux condition. While this is also true for the potential flow

equation, it fully determines the result since there is only a single scalar unknown.

This important difference has the following implication for the solution of the two

adjoint systems:

1. For the potential flow adjoint equation:

• The operator for _, in the domain is second order and Laplacian like, resulting

in a boundary value problem requiring the same number of equations as

unknowns at the boundaries.

• Differences in the discretization and application of (4.17), if consistent, may

affect the quantitative accuracy of the adjoint solution but not its qualitative

aspects.

2. For the Euler adjoint equation:

• The operator for ¢ in the domain is first order, resulting in a mixed initial

boundary value problem that requires fewer equations than unknowns at

the boundary.

• The boundary conditions for Euler adjoint equation must be applied, just

as in the case of the Euler flow equations, with careful attention to the

characteristics of the system to avoid over-specification.

With these points established, three alternative wall boundary conditions for the Euler

adjoint equations will be presented, all satisfying (5.19).

7.8.1 BOUNDARY CONDITION Type 1

The first discretization of (5.19) has the following form:

¢_ = 0

0,,[ d,_]¢2 = -_,l-_x (P- Pd)-_
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07l[ ds ]¢; = -_J o-_ (p- m)-_

¢4 = 0 (7.16)

where ¢- refers to fictitious values of ¢ below the surface, ¢ + are the values above

the surface, and

\,_, + t<%) )

It is noted that all the metric components are calculated at the wall itself. Figure (7.1)
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Figure 7.1: Computational Mesh for the Euler Adjoint Equation at the Airfoil Surface

illustrates the stencil in the coordinate system transformed into the computational

plane. Thus an application of (7.15) just above the surface would refer to values of

¢ below the surface which would be determined by (7.16). Equation (7.16) can be

O_j O_j
shown, through multiplication of ¢2 by _, and ¢3 by _, to be a linear combination of

(5.19) centered about the cell below the wall. This is but one of an infinite number of

linear combinations that would satisfy the condition that the normal adjoint velocity,

(']'_¢2 '%J "1' ]+ _,_:_), is equal to some sealed quantity related to the cost function; that is,
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equation (5.19) is satisfied. The particular choice of (7.16) is such that at the surface,

the tangential adjoint velocity, k_x_2(_'s"÷ _ _z3], goes to zero with an orthogonal mesh at

the surface ,t_x _°x + _,_,__,_ = 0), while ¢ 1 and ¢4 are arbitrarily set to zero. The nomen-

clature normal and tangential adjoint velocities refers to the correspondence between

the definitions of the contravariant velocities and these quantities; they are the same

relations, where ¢ replaces w for the adjoint expressions. This results in the interest-

ing analogy that the wall boundary condition (5.19) effectively sets the transpiration

velocity for the adjoint variable at the surface as equal to some scaled quantity related to

the cost function. This conclusion reveals quite elegant implications for the connection

between the adjoint-based design methods and those that use true transpiration at the

surface. The choice for ¢1, ¢4 and the zero tangential adjoint velocity in (7.16) does

not necessarily violate any expression in the derivation of the adjoint equations. How-

ever, just as in the solution of the Euler flow equations, over-specifying the boundary

conditions can have disastrous effects. When solutions were attempted using (7.16),

convergence could be achieved for the adjoint system. However, the accuracy of the

gradient, when compared with those obtained by finite differences, was quite poor. A

close investigation of the adjoint solution revealed that the system decoupled at the

surface, resulting in dramatic jumps in all components of _ at the surface. With these

jumps in _, the solution quite clearly is not continuously differentiable and it fails

to satisfy the rules of integration by parts which were used in the derivation of the

method.

7.8.2 BOUNDARY CONDITION Type 2

Instead of fixing the three undetermined components of the solution to some arbitrary

value (zero) at the surface, they should actually be allowed to "float." This should result

in continuous solutions for ¢, and mimics the correct wall boundary condition for the

Euler flow equations, where only zero flux is specified, with the other components

determined from extrapolation. Thus, a second set of discrete boundary conditions at
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the airfoil surface may be defined as

5i :

52 = 5+ - 2rbg-_x (P- Pd)-_ + Y ox Oy J

o,,[ jo,,5 +jo,,5 15_ = 5 +-2¢y_y (p-pd)-_ + Ox Oy ]

54 = 5+ (7.17)

It is easily shown that the discrete representation of(5.19) contained in (7.17) is

5 \ox

Furthermore, by multiplying the equation for 52 by _ and the equation for 5_ by

and summing the result, it can be shown that for an orthogonal mesh ( _oy_°'_+ _z_z-_:_'t-- 0)

Again, just as in boundary condition Type 1, all the mesh metrics are evaluated at

the edge centers. In practice, the use of(7.17) as the wall boundary condition for the

adjoint system gives gradients that are very consistent with those obtained by finite

differences.

7.8.3 BOUNDARY CONDITION Type 3

The fact that even with equation (7.17), no correction due to the application of pressure

gradient boundary condition (2.42) in the flow solution appears in the development of

the adjoint boundary condition indicates a possible source of inconsistency. Further-

more, just as in the development of Type 1 and Type 2 interior flux routines it may be

beneficial to examine the particular form of the boundary condition discretization that

results from discrete sensitivity analysis. Thus, it may be beneficial to formulate the

wall boundary condition that would result from an application of discrete sensitivity

analysis which includes the pressure gradient term. The same approach used earlier

in this chapter to develop the field discretization of the discrete adjoint will again be
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employed. First, a crude approximation to the no-penetration boundary condition used

for the Euler equations may be written as

w; = w_

071 + 071+

o,I + O,lq+
w_ = "]_y % - J ox

w; = wZ

where

= - J_xw3

071 + 07! +
qt : -J_w,_ - J o_W2

(7.18)

bp- = bp +, (7.19)

oxoy ÷ ['ox2 oy2)(_w_ = 2_s_._w 2 - \0,_ Os (_w:+

_w; = _w_

_2_ bw_ + 20x ay +

where the relationship between tp- below the surface and tp+ above the surface acts as

a place holder for the more complex relationship used later. Equation (7.19) determines

the unknowns below the wall as a function of values above the wall. If either equation

(7.12) or (7.13) is used as the equation above the wall and into the domain, the system

may be closed by specifying

_p+ _ _- 1 (w22 + w2) w:_
w2 bWl -(3- 1) w2'_W2wl-(_- 1) Wl"bw3 +(') - 1) bw4.

_wi = _w_

0X_w_ = 0s

are the tangential and normal mass fluxes calculated at the cell centers just above the

surface. Taking the first variation of these equations gives
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where all the terms on the right are evaluated above the wall. Just as in the formula-

tion of the discrete adjoint in the domain, the transpose of this boundary system gives

a discrete sensitivity adjoint boundary condition. After a bit of tedious book-keeping

these boundary conditions may be defined for the cell-centered values of ¢i,j just above

the surface as

+

_]') 1,4.1. J

¢3,_,. l

'_") ] ,,., - 1

• °-.'t#_2,,__ \ o, . \ o,

1]_4,..) _ 1

+

+ [Mi] _])2,.j

1])4,,,

= 0 (7.2O)

with Cp being an auxiliary unknown analogous to pressure for the flow equations.

Note that this is the same as equation (7.14) -- the standard discrete sensitivity

discretization for the domain fluxes -- where the ¢_,j-i terms have been replaced

by the appropriate boundary term. Below the surface, where the i, j index is still

considered the cell-centered point just above the surface, the transpose operator gives

ID2,,)_l

_4,,1--1

11_] :,J

¢:.
:,3

¢,
:,3

(7.21}

To close the system, the equations for _) are defined with the same transpose by,

, -- z,j-- _-
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ds ) (7.22)

The system (7.20--7.22) is now complete and is the exact discrete sensitivity analysis

boundary condition for the adjoint equation if (7.18) is used as the wall boundary

condition for the Euler equations. Most Euler solvers attempt a better approximation

for the pressure boundary condition than p- = p+ seen in (7.18). For the flow solver

used in this research, the expression for pressure at the surface is obtained from

equation (2.42):

(_ + y_)p. = (_x,, + ay,,)p_ + p(y,,. - x,,,,)(_,x_ - .y_).

The discrete form of this equation can be written as

where

t,3-

+w=,,_,)Bt = Y'%- ½ 2 - x,_,.__ ½

(wa,_ + wa,,_,)B2 = x_,.,_½ 2 - Y_,,_-_

g3= (w3,._+wa,.,-,)
2

Taking the first variation of this equation gives

(Pi+I,j - Pi-l,j) BI_N2
+--

2 Ba

(w2,,, + W2,,,_,))2

(bPi+l,j -- _Pi-l,j)

+

( w,j+ w2,) ( w3,+ w3_,))Y'_,,j _ _ 2 x,j, ,J_ } 2

_3

LN2

+
_3

_1_ 2 @Wa,j -t-_W3,4_1)

B_ 2
=0.
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Again after some book-keeping the expressions for the adjoint variable below the wall

in equation (7.21) may be augmented to give

_l,,j_l

1_4_,:-I

+

vth
-_ tl'v,,__l

-
2L_3 P, ,j - 1

*,)--_ ,,)-_

2L_3 P, ,j - 1

0

_li,j

_2,,j

123,,3

(7.23

Similarly the equations above the wall are also augmented, resulting in

JM?!
])2,+1 ,j

1])3, +1 ,j

1]'_4,+|, j

_|l--|,J

1/)3,-1,,

I]'_4,_ 1, J

1]'_3,, j +]

1]_4,,j+1

+

F _]i1 i,j_i

I

(o__2 _'_) + _/_,%.__,(2-g_;_

I V_2"'-_ \ o, , \0_

+ -V_, .... (?- 1)

I -V'p.., ('_ - 1) mwl

: V,_,,,,(') - 1)

+

2D 3 p,,_-i

2B3 1]'_p,, _-i

(-xn,,j_½132"k$(( /31)

2B_ l]_p,,___

= 0. (7.24)

The system is now closed by equations for ¢;v that are given by

{(p 1,_)] (d._)
,,j-½
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(7.25)

Equations (7.23--7.25) will be used as boundary condition Type 3. It must be restated

that this set of boundary conditions still does not exactly duplicate that which would

be obtained by direct application of the discrete sensitivity method. First, the assumed

discretization of the Euler equation wall boundary condition used in the derivation of

(7.23--7.25) is not identical to that used in the flow solver. Second, the dissipation

contribution at the boundary that would result from discrete sensitivity analysis has

been ignored. Comparisons among all three boundary conditions are given in Chapter

9.

7.8.4 FAR FIELD BOUNDARY CONDITION

While various choices for the discretization of the far field boundary conditions for the

Euler adjoint equations that conform to equation (5.16) are possible, in this research

these efforts were avoided. Instead, for all cases to be presented the outer boundary

condition was kept very far from the geometry of interest and ¢1_4 -- 0 was specified

as the boundary condition.
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Chapter 8

RESULTS FOR POTENTIAL FLOW

DESIGN METHOD

The primary emphasis of the results will be those for the Euler formulation presented

in the next chapter. In the case of the potential flow method the scope of the results

will be limited since many of the same conclusions can be drawn from both methods.

8.1 CONVERGENCE

Before presenting validity checks of the design method, a short examination of the

convergence characteristics of its various elements is necessary. Figure (8.1) shows

the convergence characteristics of the flow and adjoint solvers for test Case 2 to be

presented in Section (8.3). It features an inverse design at constant circulation starting

from a NACA 0012 airfoil section with a specified target speed distribution of an RAE

2822 airfoil operating at Mach 0.75 and a = 1 °. A total of 50 Hicks-Henne functions

distributed over the upper and lower surfaces are used to modify the design with the

scalar weights of these functions acting as the design variables. The choice of the

widths and locations of these bumps can be found in Tables (B. 1 and B.2) of Appendix

B1. It is noted from the tables that there is also a scaling parameter. Scaling in this

context refers to a constant multiplier which is used to give the perturbation functions

realistic values with respect to the airfoil coordinates. The convergence histories of the

average residual for the state and co-state systems are shown in Figure (8.1) for the

initial point in the design space. The flow equations are started from uniform flow with
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zero circulation, while the adjoint is started from zero values throughout the domain.

Each iteration represents a full multigrid cycle of 5 meshes with 193x33 being the

finest mesh, and one ADI sweep per mesh on a W-cycle. It is seen that both systems

show reasonable convergence rates with the flow solver being somewhat better in this

example. In general the adjoint system, although linear in its dependent variable,

tends not to converge as well as the flow equations. However, it must be remembered

that it took many years of research to tune iteration algorithms to optimize convergence

rates for flow solvers. Here, it is gratifying that by simply using the identical algorithm

for the adjoint solution, albeit with reverse biasing and sweep directions, comparable

convergence rates were attainable. One tendency observed during various tests with

the adjoint solver was that its convergence rate depended to a large extent on the

character of the forcing function on the right hand side of the equation. While this

as well as other issues were examined to some extent, a solid understanding of the

reason that the adjoint solver often did not converge as well as the flow solver was not

obtained. Further, just as in the use of flow solvers, different cases may experience

drastically different adjoint solver convergence rates.

8.2 GRADIENT ACCURACY

The first step to validate the potential flow design method is to check the accuracy of

the gradient calculated via the adjoint system. Although a complete treatment of the

sensitivity of the gradient to convergence levels for both the flow and adjoint solvers

could be helpful, these results tend to mirror trends obtained by the Euler design

method and thus the reader is referred to the results in Chapter 9. Here only a one-

to-one comparison is made between a highly accurate finite difference-based gradient

and the adjoint-based gradient. The problem chosen for this comparison is again test

Case 2 from the results to be presented in Section (8.3). This choice in many ways

represents a good standard since it uses a well proven set of design variables, it has

a unique solution, and it represents a difficult transonic problem. Figure (8.2) shows

the comparison of gradients for the two approaches at the initial design point. The
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significant difference between the two approaches is that the gradient by means of

the adjoint approach took 5.3 CPU seconds while the gradient for the finite differ-

ence approach took 18.2 seconds. Chapter 9 presents a better understanding of the

performance improvement to be expected by using an adjoint approach.

The two curves of Figure (8.2) are a simple connection of the points that represent

the gradient with respect to each individual design variable in Tables (B.1 and B.2).

The method of calculating the gradient for the adjoint approach is given in Chapter 6,

while the gradient for the finite difference method simply uses, for each element, the

difference in the cost functions directly evaluated from two nearby flow solutions. And

since identical flow solvers and mesh generation/perturbation techniques were used for

both methods, the two curves in Figure (8.2) should in theory be identical. The stepsize

of the design variables used to calculate the gradients was 0.0001, while the tolerances

of the convergence for the flow and adjoint solvers were 10 -s and 10 -:_ respectively.

Results to be presented in Chapter 9 indicate that these stepsizes and convergence

tolerances are more than adequate to obtain highly consistent results for both methods.

Therefore, the differences in the two curves, which have a very similar form, but

are off in magnitude at some locations, probably result from an inconsistency of the

particular discretization used for the continuous adjoint equation. Unlike the Euler

equations, where the choice of the implementation of the adjoint boundary condition

at the wall is not straightforward, the potential flow adjoint has a simple and easily

implemented wall boundary condition. Thus it appears that a probable contribution

to the discrepancies in the adjoint gradient is inconsistencies in the difference stencil

of the adjoint domain equations. This is not surprising considering the complicated

rotated differencing and upwind density biasing that was used for the flow solver. No

attempt was made to capture the rotated difference effects in the adjoint discretization.

In the limit of the continuous system these gradients should agree. For the potential

flow design method, a more careful assessment of the various adjoint discretization

options will not be explored. However, such studies did show significant improvements

for the Euler formulation. The question that concerns us here is whether such errors in

the gradient for the discrete system are tolerable in the context of the design problem.
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8.3 TEST CASES

Some test cases are presented here for the potential flow design algorithm. For ad-

ditional examples of using the design method developed here the reader is urged to

review Reference [92] which was presented as a direct result of this work. These test

cases can be categorized into two basic groups. The first group of test cases address

the problem of attaining a desired pressure distribution for lifting airfoils. In all of

these cases the target pressure distributions were developed by running the same

FLO42 flow solver for a known airfoil. Thus, these airfoil targets must be thought

of as fully realizable. For demonstration purposes, pains were taken to ensure that

the flow solver was run with identical dissipation coefficients so that even the shock

structures should in theory be realizable as part of the design. The most convenient

method of designing in inverse mode with the present potential flow design method is

to determine the lift coefficient associated with the target pressure distribution, and

match this lift with the initial airfoil. The design progresses with the flow and adjoint

systems being driven by constant circulation instead of fixed angle of attack. This

choice is necessary since the potential flow adjoint method developed in Chapter 4 is

only applicable for the treatment of constant circulation cases. The reason that the

solutions which will be presented show slight changes in Ct from the initial to the final

designs is that (:'_ was calculated from a pressure integration and not determined by

an explicit formula related to circulation. As a final note, in all of the test cases to be

presented for the potential flow formulation, there was no need to apply either shock

wave unweighting or smoothing to the forcing term of the adjoint boundary condition.

8.3.1 INVERSE DESIGN

The first example using this technique, Test Case 1, drives the NACA 0012 airfoil

toward the target velocity distribution for the NACA 64A410 airfoil at M_ -- 0.735,

= 0% and ('l = 0.73. Figure (8.3) shows the initial and final results for this test

where Cps instead of velocities are plotted for clarity. This case requires a shift in

the shock location and a significant change in the profile shape for the target pressure
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distribution to be obtained. Figure (8.3) shows that the final solution almost exactly

recovers the pressure distribution and the airfoil shape. Even the points through the

shock region are matched one for one. Of course this level of comparison in the shock

structure was attainable since the same level of dissipation was used to create the

targets. If the shock structure happened to be quite different it might have proven to

be a case where smoothing or shock wave unweighting of the adjoint boundary forcing

term would have been needed. Slight discrepancies in the pressure distribution are

apparent on the forward upper surface of the airfoil while no differences are perceptible

in the airfoil shape. The slight difference can be attributed to either incompleteness

in the design space or inaccuracies in the gradients.

In Test Case 2 the design program is again used in inverse mode and involves

driving the NACA 0012 airfoil at M_ = 0.75 toward the shape that attains the target

velocity distribution of the RAE airfoil at the same Mach number, a = 1.0 °, and

C1 = 0.64. Due to the steep favorable pressure gradient at the leading edge upper

surface and the strong shock exhibited (see Figure (8.4)) by the RAE airfoil at these

conditions, this case represents quite a difficult test for the design method. In the

observed results, there are no discrepancies evident between the target and the final

pressure distributions. However, a slight discrepancy is seen in the final airfoil shape.

Observing that the final a is different from the a = 1° used for obtaining the targets by

almost 0.1 ° indicates that the designed airfoil has an effective rotation built into the

coordinates that was compensated for by the constant lift design process. However,

both airfoils have leading and trailing edges at 0.0; hence, the difference between the

airfoils is not a simple rotation. As with Case 1, even the details of the shock wave

structure are recovered by the design method.

8.3.2 DRAG MINIMIZATION

The last test case introduces drag as the cost function. Again the design process is

carried out in the fixed circulation mode. In Figure (8.5), the camber distribution

of an airfoil is optimized to attain minimum drag. The design starts from a NACA

64A410 airfoil operating at M<, -- 0.75, and ('l = 0.79. Under these conditions the
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airfoil produces 204 counts of drag according to potential flow theory. Eighteen Hicks-

Henne functions as specified in Table (B.5) are chosen to modify both the upper and

lower surfaces simultaneously such that thickness is maintained. The design then

proceeds by maintaining constant lift and minimizing the large initial wave drag.

After 4 design iterations, where only the camber was allowed to vary, the method

has successfully reduced the drag to 10 counts. Both the initial and final states

are depicted in Figure (8.5). Subsequent design iterations resulted in no significant

further reduction in the cost function. This has at least three possible explanations.

First, there is the possibility that no further reduction in drag is possible with the lift

coefficient and thickness constraints. Second, it may be that the inaccuracies in the

gradient were such that an improvement in the design could not be achieved in the

specified search direction. Finally, there is the possibility that the parameterization

of the design space was inadequate to allow a further improvement.
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Chapter 9

RESULTS FOR EULER EQUATIONS

DESIGN METHOD

This chapter presents the results for the Euler design method. The results shall be

grouped into four distinct sections: convergence characteristics, gradient comparisons,

test cases using Hicks-Henne functions, and test cases using B-spline control points.

It is hoped that these results, combined with those presented in the previous chapter,

will adequately demonstrate the utility and efficiency of adj oint-based design methods.

The primary test case that is used for exercising the Euler design method will be

analogous to test Case 2 used in the potential flow method (it is also Case 3 for the

Euler formulation to be presented in Section (9.3)): starting from the NACA 0012

airfoil, and by using the difference between the actual and target pressures as the

objective, the design method drives the profile shape toward the RAE 2822 airfoil

operating at Mach = 0.75 and a = 1°. Fifty design variables of the Hicks-Henne type

are chosen as described in Tables (B. 1) and (B.2) of Appendix B1. As with the potential

flow formulation, this represents a good check case since it features proven design

variables, a problem with a unique minimum, and the challenges of transonic flow.

9.1 CONVERGENCE

The convergence for the Euler state and co-state systems is shown in Figure (9.1}.

The iterations refer to complete multigrid W-cycles through 4 meshes (193x33 being

the finest). One Runge-Kutta-like multistage time step is taken on each mesh in the
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sequence. For this test case the flow solver again shows a better convergence rate than

the adjoint solver. The flow solver is started from uniform flow while the adjoint solver

is started by zeroing out all adjoint variable components within the domain. It will

be the topic of further research to improve convergence acceleration for the co-state

system. While in the present case the same multigridding and residual smoothing

algorithms employed in the state system are used to enhance the convergence rate for

the co-state system, it is quite possible that significant retuning of these techniques

could yield improvements. Furthermore, no attempt was made in the present work to

construct the analogue to the enthalpy damping employed in the state system for use

in the co-state system. Such an analogue, or yet unexplored techniques, could signif-

icantly enhance the adjoint solver convergence performance. One obvious difference

between the two systems is the fact that the co-state system is linear while the state

system is nonlinear. Thus it may be possible to develop iteration schemes that take

advantage of this linear property to enhance convergence. The choice of the artificial

viscosity to stabilize and smooth the discrete solution was constructed for the co-state

system as a simple extension of that used for the state system. While the choice of

these artificial terms may impact the gradient accuracy, alternative choices may be

beneficial to the convergence rate.

9.2 GRADIENT COMPARISONS

9.2.1 FINITE DIFFERENCE GRADIENTS

To validate the adjoint-based design method using the Euler equations, a check of the

gradient accuracies is of considerable importance. The first step in this validation is to

obtain very accurate gradients of the discrete system for comparison purposes. Here,

the finite difference method will be used as the bench mark. Figures (9.2) and (9.3)

show the sensitivity of the finite difference gradients to both the flow solver accuracy

and the stepsize used in the differencing. These sensitivities were carried out on the

gradient calculation for the initial point of test Case 3. While requirements for both

the stepsize limit and the flow solver accuracy will change as the design proceeds,
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for the purposes of gradient comparisons it is sufficient to stay with this initial state.

Figure (9.2) shows that with 64-bit arithmetic at least 4 orders of convergence in the

flow solver are needed to render an accurate gradient for a step size of 0.0001. Figure

(9.3) shows that an acceptable stepsize to avoid discretization error for this initial state

is 0.1. Thus by using a convergence tolerance of 10 -9 and a stepsize of 0.0001 we are

assured of a highly accurate approximation to the gradient of the discrete system.

9.2.2 ADJOINT GRADIENTS

With this accurate gradient in hand a similar analysis is performed for the adjoint

approach. In this case the sensitivity to the stepsize (to which the adjoint approach

is insensitive) is replaced by the sensitivity to the adjoint equation convergence level.

The boundary condition for the adjoint equation that is chosen is the Type 3 boundary

condition described in Chapter 7 while the domain fluxes are calculated with the

more consistent Type 2 flux routines also described in Chapter 7. Figures (9.4) and

(9.5) respectively show the sensitivity of the gradient to the flow and adjoint solver

convergence levels. What is striking from these plots is that the gradient for the adjoint

method is quite insensitive to the convergence level of either the flow or the adjoint

systems. For the limiting case for both systems (i.e. where the average residual

is 10 -2 for the flow, and 10 +° for the adjoint 1) where very slight discrepancies in

the gradients are just appearing, only 10 multigrid cycles have been completed for

each system. The same level of accuracy is not obtained for the finite difference

gradient method until 10 -7 is achieved in average residual of the flow solver. This

indicates a 5 orders of magnitude less stringent convergence requirement for the flow

solution when using the adjoint-based gradient. To some extent it would be possible

to increase the stepsizes used for the finite difference method since 0.0001 was very

conservative. Remember that 0.1 was shown to be absolutely necessary to maintain

gradient accuracy. This increase in stepsize would have the effect of reducing the

1Note the residual for the adjoint is normalized by the maximum value of _, in the converged field. This

was necessary since scaling of the boundary condition introduced to scale the cost function for optimization

purposes also scales the residual and the _, because the system is linear.
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convergence requirements. However as the minimum is approached, and the norm of

the gradient becomes smaller, this larger stepsize could cause problems. The adjoint-

based gradients would not be affected in any way by these changes since they are

entirely independent ofstepsize. Here, the value of 0.0001 was chosen since in practice

it was shown to be a sufficiently conservative value for the finite difference method

even when the design was close to the optimum and the norm of the gradient was

very small. These convergence trends are consistent with the error analysis that

was explored in Section (3.7). The importance of the significant difference between

the convergence requirements for the two methods cannot be overstated. It implies,

first, that the gradients for the adjoint method will be cheaper not only from the

vast reduction of the required number of equivalent flow analyses (2 vs fi + 1) but

also because of the drastic reduction in computational cost for these 2 solutions due

to nonstringent convergence requirements. Secondly, it implies that design methods

that do not involve multiple accurate flow field evaluations during a line search (now

the most expensive part of the design procedure) should be explored with renewed

interest. To underline this result, the computational cost of the adjoint-based gradient

with the reliable levels of average residual set to 10 -4 for the flow, and 10-1 for the

adjoint, was 8.2 CPU seconds while the cost for the finite difference method using a

stepsize of 0.0001 and a flow solver average residual of 10 -7 was 59.3 CPU seconds.

This even includes the fact that for the finite difference method, the flow solver was

restarted from a previously converged solution and thus required only a few additional

multigrid iterations for each component of the gradient. The final result represents

a 7.2 fold reduction in computational time for the adjoint-based gradients. This must

be viewed as a very conservative estimate of the level of improvement that can be

realized since considerably less-converged flow and adjoint solutions would reduce the

CPU time for the adjoint-based gradient further. Furthermore, the benefit in three

dimensions would be even more marked becuase the number of design variables would

typically be greater.



Chapter 9 Results for Euler Equations Design Method 169

9.2.3 GRADIENT COMPARISONS

In Figure (9.6) a straight comparison is made between the gradients for the two meth-

ods. For this comparison the stepsizes and convergence tolerances were set to the

values defined above for the CPU time comparisons. The adjoint method used Type 2

flux routines and Type 3 boundary conditions. The result shows that there is a slight

discrepancy for the adjoint approach despite the work that was done to institute im-

proved wall boundary conditions and domain discretizations. From the development

of the method it is clear that there are many areas where discrepancies between the

current implementation and that of maintaining strict discrete consistency still exist.

Examples of these differences are evident in the treatment of the discrete dissipation

terms. Both in the matrix transpose operation, and in the surface and volume inte-

grals that form the gradient, these dissipation terms have been neglected. As was seen

in the potential flow discretization, small errors can be tolerated within the gradient

calculations without affecting the design process significantly. The error level that is

apparent in Figure (9.6) is far smaller than that shown in Figure (8.2) for the potential

flow formulation. To understand this improvement, an examination of the alternate

adjoint equation flux and wall boundary condition routines is explored.

9.2.4 BOUNDARY CONDITIONS AND FLUXES

Figure (9.7) shows a comparison of different adjoint wall boundary conditions all using

the Type 2 flux routines. For these comparisons the very tight convergence tolerances

of 10 -9 for the flow and 10 -'_ for the adjoint were used to ensure consistency. It

is seen that the original Type 1 boundary condition gave a rather poor estimate of

the gradient. This was the original wall boundary condition that was used in our

early work [65], and yet even then we were able to obtain working design methods.

The Type 2 and Type 3 boundary conditions both vastly improve the gradient. No

distinct difference is seen between these last two, leading to the conjecture that the

discrepancies still present in the adjoint-based gradient are probably not associated

with the wall boundary condition. Turning to comparisons for the flux routines where
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the wall boundary condition is fixed as Type 3, Figure (9.8) shows a comparison for

the Type 1 vs. Type 2 fluxes. Although not as dramatic as with the change in the

wall boundary conditions, a small but significant improvement is seen by resorting to

the Type 2 fluxes. It must be remembered that the Type 2 fluxes involve a significant

increase in the operational count over the Type 1 fluxes. It will be the work of future

research to determine how accurately these gradients should be calculated. In all of

the test cases to follow, the Type 3 boundary conditions and the Type 2 fluxes will be

used.

9.3 HICKS-HENNE TEST CASES

Several test cases are conducted with the Euler design method. Additional test cases

are provided in References [65, 94] which were presented during the course of this

larger body of research. To show the robustness of the method, most of the solutions are

obtained using the same set of design variables. Further, no smoothing or shock wave

unweighting of the boundary condition for the adjoint solver was used in any of these

results with the exception of one case. Itis gratifying that the adjoint solver remained

stable in the presence of the strong discontinuities that are apparent in the adjoint

equation boundary conditions. Unless otherwise stated, all of the target pressure

distributions used to drive the design problems were calculated for known airfoils with

the same basic flow solver (FLO82) as that used in the design. Furthermore, as with

the potential flow method, the dissipation coefficients were kept identical between the

analysis and the design so that even the shock structure remained realizable. However,

unlike the potential flow cases, the inverse design cases here all involve design at a

constant a. To facilitate this procedure, the airfoils obtained through various sources

were rotated and renormalized such that both their leading and trailing edges were

located at y = 0. As a final point it is noted that in many of the cases to follow, the

design method was terminated once changes in the cost function became negligible.
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9.3.1 INVERSE DESIGN

The initial and final results of Test Case 1 for the Euler design method are shown in

Figure (9.9). The NACA 0012 airfoil is modified to achieve the pressure distribution of

a NACA 64A410 airfoil at Mach 0.735 and a = 0 °. Fifty Hicks-Henne design variables

distributed around the airfoil and specified in Tables (B. 1) and (B.2) are used to modify

the shape. The design is run in fixed alpha mode with the final airfoil and pressure

distribution almost exactly matching the target. As was seen in the potential flow

cases, details of the shock structure have been matched. The corresponding Case

1 for the potential flow algorithm displayed some discrepancies in the final pressure

distribution; no such perceptible discrepancies are apparent here for the Euler method.

Test Case 2 is an inverse mode design and is displayed in Figure (9.10). This

time, the NACA 0012 airfoil is driven towards the target pressure distribution of the

GAW 72 airfoil operating at Mach 0.70 and a = 0 °. Under these conditions the target

airfoil displays a very strong shock, yet the design method is able to converge to the

desired shape without visible discrepancies using the 50 Hicks-Henne design variables

of Tables (B.1) and (B.2). Once again even the shock structure was matched to visual

resolution. If the target solution here were either more smeared or more crisp it would

obviously become an unrealizable target in terms of the dissipation that was held

constant during the design. It is noted that in such a case the strong oscillation that

would appear in the boundary forcing term for the adjoint equation in and around the

shock(s) could force the employment of either smoothing or shock-wave unweighting

in the boundary condition definition.

Test Case 3 also uses the same set of design variables and the NACA 0012 as a

starting condition, as illustrated in Figure (9.11). The target pressure distribution is

from the RAE 2822 airfoil at a = 1° and Mach 0.75. Again the design method converges

to the target, almost exactly matching even the shock position and strength. Figure

(9.11) also shows the progression during the design process toward the minimum.

Of particular note in the two intermediate solutions is the fact that both the airfoil

surfaces and the resulting Cvs retain a very smooth character with this choice of design
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variables.

Test Case 4 represents a greater challenge. The Korn airfoil at Mach 0.75 and

= 0.175 ° is chosen for the target pressure. The challenge is presented by the fact

that the Korn airfoil at this condition has shock free supercritical flow with virtually

no wave drag. Figure (9.12) shows the NACA 0012 airfoil being driven towards the

desired target, with the design method employing 54 Hicks-Henne design variables

as per Tables (B.3) and (B.4). The increase in the number of variables was necessary

in order to give the slightly greater freedom in the design space that this problem

required. As the final design is approached there is a tendency to produce a double

shock pattern instead of a smooth recompression. It appears that the design space for

this problem is more nonlinear than in the previous test cases. The final design is very

close, but does show some discrepancies from the desired pressure distribution. The

remaining discrepancies, which are not visually detectable in the airfoil shapes, are

still probably related to an incomplete design space since this shock-free case is very

delicate.

In Test Case 5 the RAE 2822 airfoil is revisited for a target pressure distribution.

However, the potential flow solver (FL042) was used to provide the target pressure

distribution. Thus this pressure distribution is not realizable by the Euler equations

because the shock wave of the target is modeled as an isentropic jump. It is interesting

that this proved to be the only case in which the shock wave unweighting was found

to be necessary. Results without the unweighting achieved a solution that did not

come very close to matching the target pressure distribution even outside of the shock

region. The final results using the unweighting with 50 design variables (Tables (B. 1)

and (B.2)), shown in Figure (9.13), very closely approximates the desired pressure

distribution, but of course does not match it exactly. An examination of the final airfoil

reveals a striking difference between it and the target airfoil. It can be seen that for

such strong shock cases, the potential flow equation can give quite incorrect results.
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9.3.2 DRAG MINIMIZATION

In two of the drag reduction cases to follow the fixed lift mode of the design procedure

is exercised. This or some other method of retaining lift is necessary since minimizing

drag at a fixed alpha would simply remove the drag due to lift by reverting to zero

lift. However, it turns out that even specifying a large lift coefficient as an implicit

constraint and drag as the cost function to be minimized does not necessarily lead to

sensible airfoil shapes.

Test Case 6 minimizes drag at fixed lift. The NACA 64A410 airfoil at Mach 0.75 and

Cl = 1.000 and ('d -- 0.0416 is used as a starting condition. Figure (9.14) illustrates

that by choosing 18 Hicks-Henne design variables, Table (B.5), which modify the cam-

ber, the optimization procedure is able to reduce the drag to just I count in 13 design

cycles. This is accomplished while the lift coefficient, Mach number and thickness

distribution remain unchanged. Note that the upper surface pressure distribution is

both supercritical and shock free. Even though this newly designed airfoil displays an

enormous amount of lift for a transonic zero drag design it is highly doubtful that it

would ever be used in practice. In particular the gradient of the upper surface pressure

distribution near the trailing edge is probably too steep. It is quite likely that such

an airfoil would experience flow separation and shocks in viscous flow. Also, since an

airfoil with essentially zero drag has been designed for this lift, thickness and Mach

number, there is nothing that precludes the existence of many such airfoils. The de-

sign code presumably happened to find one of an infinite number of such airfoils. The

conclusion from this design case is that the design problem should be more precisely

specified by the addition of more requirements beyond the minimization of drag at a

given ('t.

In Test Case 7, drag is again used as the objective function except that it is aug-

mented with a target pressure distribution to form a combined objective function.

Since the target pressure distribution indirectly specifies a target ('_, the design code

is once again run in constant alpha mode. In this example case the target pressure

distribution from Test Case 3 is augmented by the drag coefficient to form a combined
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cost function. The design variables are prescribed as in the earlier case from Tables

(B.1) and (B.2). Figure (9.15) illustrates that after 19 design cycles the drag has been

reduced from 28 counts for the initial NACA 0012 airfoil at a = 1° to 7 counts. It should

be noted from Case 3 that had the target been achieved precisely, the drag coefficient

would have been 45 counts. The resulting airfoil looks very like the RAE 2822 airfoil

and in fact matches its pressure distribution over much of its surface. The pressure

distribution in the region near and ahead of the shock is of course quite different to

accommodate the significantly weaker shock.

In the final example using the Hicks-Henne functions (Test Case 8) we once again

return to the design for minimum drag at a fixed lift. Here we try to recamber the

NACA 64A410 airfoil so that it will operate at a high lift coefficient and Mach number.

The design is carried out at Mach = 0.75 and Ct = 0.8. However, unlike Case 6,

a shock-free target pressure distribution from the Korn airfoil is now specified over

the majority of the upper surface in addition to ('d as part of the cost function. The

advantage is that the pressure distribution of the Korn airfoil does not display the

drastic pressure recovery that was obtained in design Test Case 3. Since the Korn

airfoil achieves this pressure distribution at Cl -- 0.62 the new design should be a

higher lift Korn-like airfoil. Furthermore, because we are choosing 24 Hicks-Henne

design variables (Table (B.6)) that modify only camber, the thickness distribution will

still be that of the NACA 64A410. Figure (9.16) shows that the final design has dropped

the drag from 230 counts to 3 counts in 20 design iterations. In addition the upper

surface pressure distribution looks much like that of its target, the Korn distribution.

Hence it is expected that this design would be far more practical than the one designed

in Case 6.

9.4 B-SPLINE TEST CASES

The last four test cases presented in this research explore the use of B-spline control

points as design variables. The main emphasis of these examples will be to compare

the effectiveness and reliability of these design variables with that achieved in the
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previous two sections by the Hicks-Henne functions. To make this comparison as fair

as possible some of the same test cases attempted with the Hicks-Henne functions will

be repeated using the B-spline control points. Since typical CAD systems use B-spline

surfaces to represent the geometry, B-splines were used directly to represent the initial

as well as subsequent designs.

The first example (Test Case 9) will be a repeat of Test Case 1. The goal is to

perform an inverse design at fixed alpha and Mach number. Recall that the initial

starting point was a NACA 0012 airfoil operating at _ = 0 ° and Mach = 0.75. The

target pressure distribution is specified as that of a NACA 64A410 airfoil operating

at the same alpha and Mach number. Eighteen B-spline control points on each of the

upper and lower surfaces were used to define a close approximation to the starting

NACA 0012 airfoil. To ensure a smooth and continuous airfoil throughout the design,

the degree of the B-spline curve was set to 4, the control points at both the leading

edge and trailing edges remained fixed, and the points on either side of the leading

edge were forced to move in unison. This left 31 of the 36 control points as design

variables. These were allowed to move freely in the y coordinate direction only. The

locations of these control points are provided in Table (B.7). The final design after

40 iterations is shown with starting point in Figure (9.17). Just as when the Hicks-

Henne functions were used, the B-spline design space was able to fully recover both

the pressure distribution and the airfoil shape. A notable difference between this case

and Case 1 is that in Figure (9.17) there is a slightly perceptible oscillation in the

final pressure distribution while Figure (9.9) shows no such oscillation. The small

differences between the number of design iterations and the final values of the cost

functions are not considered significant since they may be problem specific. However,

since such a good result was obtained here with only 31 design variables as opposed

to 50 for the Hicks-Henne case, some advantage appears to be offered by the B-spline

control points.

Test Case 10 essentially repeats Test Case 2 with much of the same discussion for

Test Case 9 applying here. The reader is referred to the discussion of Test Case 2 for the

specific design goals and conditions. The design variables were the same 31 variables
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described for Test Case 9 and listed in Table (B.7). Again there is a noteworthy visible

oscillation in the final pressures on the forward upper surface in Figure (9.18).

In Test Case 11 the design of Test Case 3 is repeated with the 31 B-spline control

point design variables listed in Table (B.7). Figure (9.19) shows two interim solutions

in addition to the initial and final solutions. A comparison between these plots and

those in Figure (9.11) shows that the interim solutions are much more oscillatory for

the B-spline control points than they are for the Hicks-Henne functions. Further, the

reduction in the cost function for the B-splines is not nearly as good at iterations 5

and 10 even though the cost function for the final solution is actually better than that

of the Hicks-Henne case. One possible cause of these oscillations is that the B-spline

control points may localize the design variables to a point that they act more like using

the mesh points themselves as design variables. Thus the high frequency information

contained in the control points can easily cause oscillations in the design, with the

result that there is a greater degree of nonlinearity and a poorer conditioning of the

design space as compared with that for the Hicks-Henne functions. Although they

are not presented here, similarly poor interim solutions were evident in Test Cases 9

and 10. Further tests using the B-spline control points indicated that the number of

control points determined the extent to which these oscillations in the interim designs

existed. When the number of control points and hence the degree of the design space

was increased, the gross oscillations in the interim solutions also increased. In extreme

cases the design process stopped far from the high quality solutions presented here.

One possible cause of the failure is that a local minimum in a multimodal design space

was reached. For a modest number of control points, say 10 per surface, the severity

of the oscillation in the interim solutions was greatly reduced. However, such a small

number of control points far from guarantees that achievable pressure distributions

would be attained. A prudent step could be to use a low-pass filter when using B°spline

control points as design variables, so as to smooth the control in a manner similar to

that employed by Jameson [54, 55, 59]. Even with such drastic interim solutions it

was gratifying that the final solution in Figure (9.19) actually did better in terms of

the cost function when compared with Test Case 3.
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The final Test Case (12) in this thesis repeats Test Case 4 using the B-spline control

points listed in Table (B.7}. In this difficult shock-free case the B-spline control points

were able to achieve better final results than in Case 4 for the Hicks-Henne functions.

It seems from this example as well as the others presented in this section that, for a

given number of design variables, the B-spline control points indeed gives a larger de-

sign space than the Hicks-Henne functions. However this greater geometric flexibility

comes at the possible price of a greater high frequency content in the design space that

may in turn increase the likelihood of a multimodal design space. Although this study

of design variables is far from comprehensive it gives an introductory example of the

problems that must be explored with respect to the design space parameterization.
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Design Variables Defined in Table 1. Test Case 2.
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Design Variables Defined in Table 1. Test Case 2.
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9.9a: Initial Condition, ! = 112.205

C't = 0.0000, ('a = 0.0003, a = 0.0 °
9.9b: 55 Design Iterations, I = 0.040

() = 0.6476, ('d = 0.0076, o = 0.0 °

Figure 9.9: Case 1: M = 0.735, Fixed Alpha Mode. Inverse Design, 50 Hicks-Henne

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target (,p: NACA 64A410, M = 0.75, e_ = 0.0 °.

9.10az Initial Condition, I = 144.161

('l = 0.0031, ('_t = 0.0002, e_ = 0.0 °
9.10b: 45 Design Iterations, ! = 0.025

('l = 0.8132, ('d = 0.0157, a = 0.0 °

Figure 9.10: Case 2: M = 0.70 Fixed Alpha Mode. Inverse Design, 50 Hicks-Henne

Design Variables.

--, z Initial Airfoil: NACA 0012.

- - -, + Target ('p: GAW 72, hi = 0.70, _ = 0.0 °.
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9.11e: 10 Design Iterations, ! = 0.840

('l = 0.6189, ('d = 0.0035, a = 1.0 °

9.11d: 35 Design Iterations, 1 = 0.008

(:t = 0.6028, ('d = 0.0045, _= 1.0 °

Figure 9.11: Case 3: M = 0.75, Fixed Alpha Mode. Inverse Design, 50 Hicks-Henne

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target ('t,: RAE 2822, M = 0.75, _ = 1.0 °.



Chapter 9 Results for Euler Equations Design Method 188

×

4: "., "*. °

i ' " °

!

: °,

°°%

if-. :%. %:

• °

; " °°°OOo%_.
d

i
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9.12b: 40 Design Iterations, ! = 0.065

(,'t = 0.6292, ('d = 0.0004, _= 0.175 °

Figure 9.12: Case 4: M = 0.75, Fixed Alpha Mode. Inverse Design, 54 Hicks-Henne

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target C_: Korn Airfoil, M = 0.75, _ = 0.175 °.
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9.13a: Initial Condition, I = 128.320

(,'l = 0.2261, ('_ = 0.0028, _ = 1.0 °

9.13b: 40 Design Iterations, ! = 1.097

Cl = 0.8135, ('d = 0.0166, _ = 1.0 °

Figure 9.13: Case 5: M = 0.75, Fixed Alpha Mode. Inverse Design, 50 Hicks-Henne

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target C_,: RAE 2822 (Potential Flow Cp), M = 0.75, _ -- 1.0 °.
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Figure 9.14: Case 6: M = 0.75, Fixed Lift Mode.

Hicks-Henne Design Variables.

--, × Initial Airfoil: NACA 64A410.
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9.15az Initial Condition, I = 79.881

('t = 0.2261, ('d = 0.0028, e_= 1.0 °

9.15b: 19 Design Iterations, / = 5.446

(, (,= 0.5937, d = 0.0007, _ = 1.0 °

Figure 9.15: Case 7: M = 0.75, Fixed Alpha Mode.

Design, 50 Hicks-Henne Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target ('p: RAE 2822, M = 0.75, _ = 1.0 °.

Drag Minimization + Inverse
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9.16az Initial Condition, I = 52.314

(,'l = 0.8000, Cd = 0.0230, a = 0.708 °

9.16b: 20 Design Iterations, 1 = 3.312

Cl = 0.8000, Cd = 0.0003, _ = 0.405 °

Figure 9.16: Case 8: M = 0.75, Fixed Lift Mode. Drag Minimization + Inverse Design,

24 Hicks-Henne Design Variables.

--, Initial Airfoil: NACA 64A410.

- - -, + Target Cp: Korn, M = 0.75, (_ = 0.174 °.
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9.17a: Initial Condition, ! = 112.443

Ct = 0.0000, ('d = 0.0003, a = 0.0 °

9.17b: 40 Design Iterations, ! = 0.043

Ci = 0.6485, C'd = 0.0073, a = 0.0 °

Figure 9.17: Case 9: M = 0.735, Fixed Alpha Mode. Inverse Design, 31 B-Spline

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target C,: NACA 64A410, M = 0.75.
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9.18a: Initial Condition, I = 144.250

('t = 0.0027, (',t -- 0.0002, a = 0.0 °

9.18b: 45 Design Iterations, I = 0.015

(,'l = 0.8119, Cd = 0.0160, t_ = 0.0 °

Figure 9.18: Case 10: M = 0.70 Fixed Alpha Mode.

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target ('p: GAW 72, M = 0.70.

Inverse Design, 31 B-Spline
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9.19az Initial Condition, ! = 68.943
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9.19c: 10 Design Iterations, ! = 4.211

('t = 0.5927, ('_ = 0.0072, (_ = 1.0 °
9.19d: 35 Design Iterations, / = 0.004

Cl = 0.6033, Cd = 0.0046, _= 1.0 °

Figure 9.19: Case 11: M = 0.75, Fixed Alpha Mode.

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target ('_: RAE 2822, M = 0.75.

Inverse Design, 31 B-Spline
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9.20az Initial Condition, I = 63.043

C/= 0.0412, ('d = 0.0004, a = 0.175 °

9.20b: 40 Design Iterations, I = 0.044

(,'l = 0.6302, Cd = 0.0004, _ = 0.175 °

Figure 9.20: Case 12: M = 0.75, Fixed Alpha Mode.

Design Variables.

--, × Initial Airfoil: NACA 0012.

- - -, + Target Cp: Korn Airfoil, M = 0.75.

Inverse Design, 31 B-Spline
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Chapter 10

CONCLUSIONS AND FUTURE WORK

This work has presented two new aerodynamic shape design methods. Both meth-

ods addressed the problem of transonic airfoil design subject to inviscid governing

equations. The first examined the use of the potential flow equation while the second

employed the Euler equations. The design problems for both methods were devel-

oped as general formulations such that any likely aerodynamic figure of merit may

be treated within the framework of gradient based numerical optimization. The com-

putationally expensive finite difference gradients often used by such methods were

replaced here with gradients calculated via adjoint solvers. This idea which was orig-

inally proposed by Jameson [54, 55] for transonic flows was extended here such that

constraints with respect to geometric complexity have been removed. This was accom-

plished by replacing the reliance of the previous method on an analytic mapping with

a general finite volume formulation combined with a grid perturbation method. The

research also introduced the use of both alternative design space parameterizations

and an alternative design space search strategy. Two different parameterizations in

the form of Hicks-Henne functions and B-spline control points were tested. The de-

sign space search strategy was an unconstrained quasi-Newton method which has

been frequently used for finite difference optimization problems. In addition, various

discretization procedures for the adjoint systems that result from the application of

continuous sensitivity analysis were presented.



Chapter 10 Conclusions and Future Work 195

10.1 COMPUTATIONAL SAVINGS VIA ADJOINT FORMULATIONS

The main idea of using control theory in aerodynamic design is to reduce the comp-

utational requirements of the gradient calculation required for the design methods

from (Tz)(fcost) to 2(roost), where n is the number of design variables, and f_ost is the

approximate computational cost of a single flow analysis. In the examples that have

been presented in this research, a reasonable estimate of adequately parameterizing

the design space for airfoils was 50 degrees of freedom (50 design variables). A simple

estimate for the amount of savings achievable in the calculation of the gradient is

given below:

Flow Analysis = 1 fco_t

Finite Difference Gradient Calculation = 51 fco_t

Adjoint Based Gradient Calculation -- 2 f_ost

The actual savings that were seen in the Euler equations were:

Flow Analysis = 5.8 CPU seconds

Finite Difference Gradient Calculation = 59.3 CPU seconds

Adjoint Based Gradient Calculation -- 8.2 CPU seconds

The reason that a factor of about 25 reduction in the CPU time for the gradient

calculation, as might be expected, was not obtained results from the fact that the finite

difference gradient was significantly cheaper than predicted by the simple estimate.

The use of restart solution data to accelerate the convergence of the nearby solutions

needed in the finite difference gradient is mostly responsible for this difference between

the estimated and actual costs. Nevertheless, it is still seen that a large reduction in

CPU time to calculate the gradient is realized by the use of the adjoint method.

The computational costs of the entire design problem is summarized below.

Actual Flow Analysis (Initial Point) = 5.8 CPU seconds
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Actual Adjoint Based Gradient Calculation (Initial Point} = 8.2 CPU seconds

Actual 35 Design Iteration Using the Adjoint Method = 665.0 CPU seconds

The actual computational cost for 35 iterations was dominated (_85%) by the 2-5 flow

solutions which were performed within each line search. While the entire design code

was not run using the finite difference gradient, a reasonable estimate of the CPU

time required for such a run is 2500 seconds. Implying that roughly a factor of 4

reduction in CPU time for the overall design procedure was achieved by employing

adj oint gradients.

If three-dimensional problems are to be considered it is clear that the computa-

tional savings would be even greater due to the necessarily greater number of design

variables. The actual computational savings of the adjoint methods are further en-

hanced by their reduced convergence requirements for the state and costate systems

when compared with their finite difference counterparts. The cost savings realized by

the adjoint method when it is actually employed within a design algorithm will de-

pend on the number of additional flow calculations that may be needed in univariate

searches. Such extra flow calculations incur the same additional computational costs

regardless of whether the adjoint approach is used or not. Thus these extra costs will

have a greater relative impact on the total CPU time of adjoint-based methods since

they may make up a large portion of the computational costs outside the gradient

calculation.

10.2 CONTINUOUS VS. DISCRETE SENSITIVITY ANALYSIS

The new methods developed in this thesis both implement continuous sensitivity meth-

ods. While these methods produce gradients that may not exactly correspond to those

obtained via finite differences they must produce gradients that are consistent with the

solution to the continuous problem within the accuracy of the discretization. Equiv-

alently, it may be stated that the gradients obtained, in the limit of convergence and

step size for the finite difference method, will always contain errors with respect to
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the gradient of the continuous system simply due to the discrete flow field approxi-

mations. In contrast, if a method is developed using full discrete sensitivity analysis

it must necessarily produce gradients, in the limit of convergence and step size, that

exactly matches those obtained by finite differences. Thus, discrete sensitivity meth-

ods produce gradients that are consistent with the discrete representation of the flow

equations regardless of specific discretization errors that may be present in the flow

equations. On the other hand, continuous sensitivity analysis produces gradients that

are directly consistent with the original continuous system depend on the refinement

of the mesh. And unless the discretization of the continuous adjoint system is done

to mimic that for the transpose of the discrete flow equations these gradients may

differ from finite difference gradients by an amount consistent with the difference in

discretizations between the two systems. In the limit of mesh refinement both the

continuous and the discrete methods as well as the finite difference method should

produce identical gradients. In this research a preliminary study of the importance

of these various discretization options for the adjoint system was studied. It appears

that the continuous sensitivity method produces gradients which are accurate

10.3 OPTIMIZATION STRATEGY

The second aspect that deserves a significant research effort in future works is the

trade-off between the accuracy required of the flow and adjoint convergence and the

optimization algorithm. This trade-off will have consequences for determining the

type of optimization algorithm that is used and the manner in which constraints

are enforced. This body of work did not attempt to resolve this open issue since it

was felt that such an effort would have resulted in a research project that would

extend well beyond the scope of a single Ph.D. thesis. In this work an unconstrained

quasi-Newton design method using BFGS updates to the approximate Hessian was

used. Since this method uses rank two updates to build the approximate Hessian,

reasonable accuracy in both the gradient direction and achieving the minimum along

the line search direction were necessary. This typically required 2-5 flow analyses in
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the line searches using the successive quadratic interpolation technique. This choice of

the optimization algorithm often proved ideal in finite difference applications in which

unconstrained methods sufficed. However, with the development of adjoint methods

to obtain cheap gradients for CFD problems, BFGS quasi-Newton methods may no

longer be the wise choice. For one, the cost of assuring very accurate gradients and

and somewhat accurate line search minimums, which are necessary to assure accurate

rank two updates, may be overkill since a constant step along a very inexpensive and

yet reasonably accurate gradient should insure modest progress toward a minimum

during the initial steps of the design process. To illustrate the idea, instead of highly

converging both the flow and the adjoint systems and then constructing a highly

accurate gradient that is passed to a quasi-Newton method, a tightly coupled approach

takes a few steps in the flow solution, a few steps in the adjoint solution, calculates

an approximate gradient, takes a constant preset step in the gradient direction, and

continues. This is exactly the approach that both Ta'asan et al. and Jameson have

independently explored in conjunction with adjoint methods.

BFGS quasi-Newton methods may also become problematic for an entirely different

reason when adjoint-based three-dimensional design problems are to be considered.

In such problems it is naturally attractive to exploit the cheap gradient information by

parameterizing the design space with hundreds if not thousands of design variables.

However, quasi-Newton methods become more cumbersome as the number of design

variables become truly large due to the necessity of performing matrix operations.

Furthermore, it may take considerably longer to develop a Hessian with sufficient

rank, bringing into question the usefulness of the early approximate Hessian infor-

mation. Unfortunately the simple, tightly coupled steepest descent method previously

outlined may also not be the ideal solution. For one, it is well know that steepest

descent methods can have very poor convergence performance on even slightly non-

linear problems. Also, an appropriate constant step size in the initial stages of the

design may become poorly scaled as the optimum is reached. A possible alternative

would be a low memory or reduced quasi-Newton method that retains only the last

few updates. Simple rank one updates may be used such that the minimum along
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each successive search direction need not be reached. The method would not require

storage above that of a limited number of vectors used to reconstruct the approximate

Hessian at each design iteration. Furthermore only the last updates which should

remain locally pertinent within the quadratic approximation would be retained. Such

a method should be more tolerant of changes in the Hessian as large design spaces

are explored with many iterations. As in the case of the method first employed by

Jameson, a limited memory quasi-Newton method could be used without converging

either the flow solver or the adjoint solver since any errors in the resulting gradients

and hence the Hessian updates would only be retained in the approximate Hessian

for a few design iterations. This is in contrast to the traditional quasi-Newton meth-

ods which are permanently contaminated by any gradient inaccuracies. Other design

algorithm alternatives should also be explored in conjunction with the use of adjoint

methods, one possibility being a full Newton method with the solution of the adjoint

equation used to assist in the construction of the full Hessian at each iteration as well

as the gradient (see Appendix A).

10.4 GEOMETRIC GENERALITY AND DESIGN PARAMETERIZATIONS

This research focused on demonstrating the viability of using adjoint-based design

methods in the context of traditional optimization strategies and realized, to first or-

der, the computational benefits outlined above. It was shown that the basic approach

could be applied to not only different governing differential equations, but also differ-

ent parameterizations of the design space such as Hicks-Henne functions or B-spline

control points. Unlike Jameson's previous efforts, here, no specific mappings from

physical to computational space were required here. Instead, subsequent meshes,

required to determine the manner in which variations of the design variable affect

the variation of the cost function, were created via an analytic mesh perturbation

algorithm. Essentially, this algorithm defined an algebraic relationship for determin-

ing how changes in the mesh point locations at the surface propagate into the flow

field domain. The only necessary information needed by such an algorithm is a "high
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quality" initial mesh and the changes that are desired at the bounding surfaces. This

approach, in theory, will allow any mesh topology and/or structure to be treated with-

out restriction to a particular mapping. Further, savings in the design methods were

obtained by reducing the integrals spanning the entire flow fields to integrals acting

only on the bounding surfaces. This reduction was possible through the use of the

known analytic relationship between the surface points and the mesh as a whole.

The work here also replaces Jameson's original parameterization of the surface

control (the actual mesh points) with smooth analytic functions such that the transient

as well as final airfoil designs remained smooth. This allowed the design method to

proceed without the use of implicit smoothing of the gradients. The two different

design space parameterizations that were tested (Hicks-Henne functions and B-spline

control points) both showed promise and versatility. However, much further work in

this area will be required.

10.5 FUTURE WORK

Numerous open issues still remain for future research. Among these are the following:

• Continuous vs. Discrete Sensitivity Analysis

• The Level of Coupling Between the Flow, Adjoint, and Design Systems

• The Choice of the Optimization Algorithm

• The Choice of Parameterization of the Design Space

• The Manner in which Constraints are Built into the Design Method

This work represents just the initial demonstration cases for a new and rapidly

developing technology. Three research papers have been presented by the author

based on implementations that have been developed in this dissertation [92, 65, 94].

However, due to the pace of research in this area, none of these have appeared yet

in archival journals. The importance of this research is clear since it opens the way

for efficient three-dimensional automatic design algorithms. Unlike many previous
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design approaches that have been developed for two-dimensional problems but could

not easily be extended to three dimensions, the work here extends directly to three

dimensions. Furthermore, the use of mesh metrics and not a mapping Jacobian implies

that the new techniques are not dependent on any mesh type. Demonstrations of the

extension to three-dimensional design problems with general and even multiblock

meshes have very recently been achieved by the author and his collaborators [93,

95, 23, 96]. These later efforts were not presented here simply to keep the focus of

the research on the more technical aspects of adjoint-based design as opposed to its

practical extensions. Finally, it is noted that even unstructured meshes may be treated

under the same framework presented in this thesis.
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Appendix A

SECOND ORDER METHODS

Generally, a design optimization procedure benefits when more information pertain-

ing to the nature of the design space is available. For the gradient-based methods

introduced in Chapter 3, the more terms of the Taylor series expansion that are re-

tained, the greater the accuracy of the approximation. However, as discussed before,

obtaining higher-order information is even more computationally expensive than ob-

taining gradient information. Thus, this Appendix presents a technique by which the

full Hessian can be obtained at a significant reduction in computational cost over that

for a purely finite difference method. The development resembles the use of control

theory to obtain cheap first derivatives.

A.1 REVIEW OF FIRST ORDER FORMULATION

The cost function and the flow field constraints can be written in index notation as

i = i (u,,, ,l'_, _rk),

Rj (u,,, ,l',, P_) = 0.

Here, i and j represent the domain mesh points and k represents the surface mesh

points. Where Einstein's summation notation is implied, the first variations become

0I _I _ , 0I
61 = 0w--_6u,i + _ ,ti + _ _-k, (A.1)

5R/ = L0u,,J 5u,, + ti),l;J [_-_.J bjv_. = 0. (A.2)
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where the sparseness of the matrices '2_ and aR_, _ depend upon the stencil of support

in the discrete scheme. By satisfying the adjoint equation,

Owj ] _/'_= Owj--' (A.3)

the first variation in the cost function may be written as

o, , )Ol 6,t', + 6.Tk -,¢,j + _,t, + b.Tk . (A.4)
_I = OA--;, -ff k La,LJ t/-_--_kJ

A.2 SECOND ORDER FORMULATION

The first variations may be written as

61 = 61 (u,,, A'i, _k, 6u,,, 6A'i, 6_k)

6R 3 = 6Rj (wi, ,l'i, Jc'k, 6wi, 6A'i, 6.Tk) = O.

It is therefore possible to express using the chain rule the second variations as

(52I = 0(,_I) , , O(_l)_,l, _ O(6I)_f k
0,%-7_'" + _,v, +--b-f[ •

O(bl)
+ 0(15I) b2u,, + 0(6I__.._)_2A; + ___29rk (A.5)

O(6u,,) 0(_,I;) O(6Drk)

6ZRj = 0 = [O(_Rj)
[ OWl

6 w_ +
O(6R_)

0.__

Using expressions CA. 1) and (A.2) we have

O(_G) OG
0(_w,) Ow, '

0(61) Ol

0 (6,t;) O,t',"

o (b_j) ORj
O(_,L) 0,t;'

0(61) Ol

O (&rk ) O.r_ '

O(_Rj) _ onj
0 (6._ ) 0 _,. '

0(61) 021

Owi OwtOw_
6wl +

02I
_,_'_+

02I

(A.6)
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0(6I) 021 02 ] 021

0(6I) 02I 0)21 021

0)F_. - 0)u,_O_k6u'_ + 0).r_0)-----fi£6"rt + 0)F,,0)_k 6F''''

_ 02 R3 0)2Rj0 (6R)) 0)2Rj 6u,l + --6,l"1 + 62Fro,

0)u,, 0)u,10)wi 0),rlowi OT,,_&r_,

_ 0)2 Rj 0)2 Rj0 (6R_) 0)2R: 6u,_ + --6,l"_ + b:F,,_,
0),r, 0)u,_&t; o,rto,v_ 0)F,,,OA;

i) (iSRj) 0)2R) 6wl + 02RJ 5,l" 02R3 6.T,,_,
o.G - o_,_o-------_ko,_tof k _+ 0)_%of _.

(A.7)

where I also represents the points in the domain and m represents the surface points.

By combining (A.5) and (A.6) with the co-state variable _,j and substituting (A.7), 52 ]

can be written as,

0)21 0)2 ] 0)2 [

52 ] = ._ ,, 6wl6wi + 6,l'16,l"i + 0).7:m0)jck6_mitJckowww, 0),riO,l;

02I " _ 021 02I 6_,n6,l;
+2_&lt6w, + z0C__u,_ _5,,,_u,, + 2 0_,,_0),l, '

+_ _2'1"_+ if/'s2GOJ-k

[ i)2RJ 6 _ ,-_"3 |.-t-=c--., u _bu i + --
[ UtOIUII_

-_',j 2_6,l)6

--'_"S [+_ _2 '1'_ +
t 0,li

. 02 R 3 _- + ---

' 02R) 6 ,]
u,i + 2i).TmOuiO2RJ, &T,,_&vi + 20_----_,1,  :,, 6aij

OR_ 6_ ] (A.8)

This daunting expression still has 16 terms that involve the variations 6u,, 6,1', 6¢-, 12,1',

and 62¢-. The only variation which has been eliminated by using _;, is 62w. However,

if the grid generation and surface perturbation are analytic, all the terms with the

exception of 6w should be easy to obtain. In this case, 6w can be obtained from the

direct expression,

OR¢ ORj 6 l' 0)R3 6
Ou--_i6wi = -,-777.. . i -0) A i _ °T k "
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Therefore the term _w must be calculated for each right hand side depending on each

design variable. This is equivalent in cost to a finite difference gradient evaluation.

Thus the cost of evaluating tt2l is n + 1 flow calculations plus one adjoint calculation.

An alternative design method is then possible that is not much more computationally

expensive than a finite difference gradient method, but promises faster convergence to

the minimum through the use of the full and up to date Hessian. The implementation

of such a method is beyond the scope of this research and it remains an open issue

whether such methods would be advantageous. When compared with using control

theory for just the the gradient information, the addition of n flow calculations per

design iteration may not be warranted for obtaining the full Hessian information at

each iteration. If the number of design variables required to parameterize the design

space adequately becomes large, not only does the cost of n flow calculations become

prohibitive but the cost of solving and storing the Newton problem with a full rank

Hessian also becomes an issue. For that matter, if the number of design variables

becomes very large (O(103 ) or greater) even the cost of quasi-Newton updates and

direction calculations may force the use of a much more simplistic optimization process

such as steepest descent.

An additional concern of this full Newton design method is the practical evaluation

of the third order tensors _ _ _ The gradient evaluation only required
_Wt_%L', ' _%l'1_9,1", ' :_,l'l;_w, "

knowledge of the standard sparse Jacobian matrices, _ and _ that are readily

available in many flow solution methodologies.

One of the fortunate aspects of the higher-order approach is that once an adjoint

solver is available, no additional difficult iterative solution procedure need be con-

structed since the same adjoint problem applies whether the desired goal is 1st or 2nd

order information. In practice, an implementation of such a method is somewhat sim-

plified from equation (A.8) since many terms drop out. The following section develops

a specific application of the second order design algorithm proposed here.
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A.3 APPLICATION TO THE EULER EQUATIONS

In order to see how a second order design algorithm would work on a specific problem we

shall once again consider the design of airfoils subject to the inviscid Euler equations.

The cost function chosen as an illustration of the technique will be the inverse design

problem at a fixed angle of attack.

Repeating the development in Chapter 5 the cost function may be written as

I = _ (p -- pd) 2 ds = (P - Pd d_,

while its first variation is

_I= (p-p_)6pk-_)d(+_ (p-pd)2_ -_ d(. (A.9)

To develop a second order approach it is necessary to obtain the second variation of

the cost function as well:

521= 5p6p -_ d_ + 2 (p- pd)(_P kd_)

+ _ (p - pd) 2 d_ + :(P - pd) _2p d_. (A.10)

Recall from Chapter 5 that the governing equation was given as

while its first variation was

_6/" =

b(; =

Now just as in the case of the

needed:

where

b2 F = j 0( 02f
Ox 0w 2

0(_(;)
O(bF____)+ - 0 in D, (A.11)

0_ 07/

 TwwOW +.I °g,sw f +Ow \' \ g

j O, I Of, ' ' ( j O'l _ ( O'l __x-_wOW + .] O'l Og bw + b f + b J g.
Oy Ow \ Ox ) Oy )

cost function, the second variation of (A.11) is also

+ -- 0 ---- (_2R in D, (A.12)
0_ 07j

+

bw_w + .l-_yi-Y-_w2bWbW + 2_ ,l i-_x -5--_w6W+ 2_ .I:_:q Ow

"]i)_ Of b2w_-']_y Ogt_2W-}-62 (']_) f +_2 (Ji)_g'OxOwOW \ Oy,]
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_2 G

+

J-_x-O-_w2bW_W + J-_y-:OW2W2°w°w + 2_ 0w +2b k Oy] 0

)Y-_x _w _ w + J-_y Ow + -- f +

It is noted that (A.12) is set equal to zero since all variations of R must necessarily

be zero. Equivalently stated, the residual must be forced to zero everywhere within

the design space. It was this fact that allowed us to use the first variation of R as a

constraint to eliminate _w from the definition of the first variation of the cost function.

After multiplying (A. 12) by a still arbitrary adjoint vector and integrating over the

domain we have

_)f,T --_ + 0,! ) d_d,]= 0,

which after integration by parts may be written as

( Of'T62 F T _52G) d_d11=/o \

+

Just as in the body of the thesis, an O-mesh is implied with the integrals along the cut

line cancelling. On the profile, where _k = 0 and _,1 = - 1, and the boundary conditions

for the Euler equations are given by

0

_57r
(; = ,I

_P

0
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the second variation may be given by,

0 0 0

(--_x62p 26 _ ) 6p _ ) p
62(;=J + + (A.13)

a,, (.i:,,," I b2 ( j m_(-7-_y62p 26 6p ) p

0 0 0

Then by choosing _', = 0 at the outer boundary where _ = 0 and 7,,_ = 1, and forcing _,

to satisfy our original adjoint expression, we have

0__' _,T0_'_(,T0_'
0l _1 -_- 2 _ = 0 in D, (A.14)

as well as the boundary condition

(lo,i _) dsJ _,2_xz. + _':_ = - (p - Pd) _-_ on C. (A.15)

The final form of the second variation of the cost function can be written without a

dependency on 62w as

1 )2 b2
621 = fc6pbp(_)d_+2fc(p-pd)bp(_)d_+_f (p-pd (_)d(

.a ,,T+ /D --_0_''T62 [ q- 07];"Or'" 62(; It d_dTI

+ f/_ {'t'2162\ ' _-_--_:z]P+26 Ox] @] +W3]_21J-_-y)p+26( ",O'l'l

(A. 16)

The _2 F and _2(; terms are defined as

_2 F = .] -- --
0_ 02f

Ox 0w 2 6w6w+.l[(y-_---_w2OWOW+2,_(l )Z_-ww +26 J _wwOW

law-'g,
k tit//

_2(; = j__ __
071 02f

Ox Ow 2 6w_w +._yy_ewe +2_ ,. +26 6w\ oyli_w

+ b2 ,l .f+ [J - .g.
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It is noteworthy that even though _2W has been eliminated from (A. 16) the equation

still contains _w, b (J _ _, and 52 (,] _) The expression may be simplified by choos-\ _ xj ] ,gxj "

ing a grid perturbation method in which _i2(J_) = 0. However, even with this

assumption, evaluating (A. 16) is no simple task.
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Appendix B

TABLES OF DESIGN VARIABLES

Design Variable Width Exponent x Position Scaling Stepsize Surface
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3.50 0.975 0.01 0.0001 Lower

3.50 0.95 0.01 0.0001 Lower

3.50 0.925 0.01 0.0001 Lower

3.50 0.90 0.01 0.0001 Lower

3.50 0.85 0.01 0.0001 Lower

4.00 0.80 0.01 0.0001 Lower

4.00 0.75 0.01 0.0001 Lower

4.00 0.70 0.01 0.0001 Lower

4.00 0.65 0.01 0.0001 Lower

4.50 0.60 0.01 0.0001 Lower

4.50 0.55 0.01 0.0001 Lower

4.50 0.50 0.01 0.0001 Lower

4.50 0.45 0.01 0.0001 Lower

4.50 0.40 0.01 0.0001 Lower

4.00 0.35 0.01 0.0001 Lower

4.00 0.30 0.01 0.0001 Lower

4.00 0.25 0.01 0.0001 Lower

3.50 0.20 0.01 0.0001 Lower

3.50 0.15 0.01 0.0001 Lower

4.00 0.125 0.01 0.0001 Lower

4.00 0.10 0.01 0.0001 Lower

4.00 0.075 0.01 0.0001 Lower

4.00 0.05 0.01 0.0001 Lower

4.00 0.025 0.01 0.0001 Lower

4.00 0.0125 0.01 0.0001 Lower

Table B.I: Design Variable Set 1: Lower Surface -- 1-25
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Design Variable Width Exponent x Position Scaling Stepsize Surface
26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43
44

45

46

47

48

49

5O

4.00 0.0125 0.01 0.0001 Upper

4.00 0.025 0.01 0.0001 Upper

4.00 0.05 0.01 0.0001 Upper

4.00 0.075 0.01 0.0001 Upper

4.00 0.10 0.01 0.0001 Upper

4.00 0.125 0.01 0.0001 Upper

3.50 0.15 0.01 0.0001 Upper

3.50 0.20 0.01 0.0001 Upper

4.00 0.25 0.01 0.0001 Upper

4.00 0.30 0.01 0.0001 Upper

4.00 0.35 0.01 0.0001 Upper

4.50 0.40 0.01 0.0001 Upper

4.50 0.45 0.01 0.0001 Upper

4.50 0.50 0.01 0.0001 Upper

4.50 0.55 0.01 0.0001 Upper

4.50 0.60 0.01 0.0001 Upper

4.00 0.65 0.01 0.0001 Upper

4.00 0.70 0.01 0.0001 Upper

4.00 0.75 0.01 0.0001 Upper

4.00 0.80 0.01 0.0001 Upper

3.50 0.85 0.01 0.0001 Upper

3.50 0.90 0.01 0.0001 Upper

3.50 0.925 0.01 0.0001 Upper

3.50 0.95 0.01 0.0001 Upper

3.50 0.975 0.01 0.0001 Upper

Table B.2: Design Variable Set 1: Upper Surface -- 26-50
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Design Variable Width Exponent x Position Scaling Stepsize Surface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

3.50 0.975 0.01 0.0001 Lower

3.50 0.95 0.01 0.0001 Lower

3.50 0.925 0.01 0.0001 Lower

3.50 0.90 0.01 0.0001 Lower

3.50 0.85 0.01 0.0001 Lower

4.00 0.80 0.01 0.0001 Lower

4.00 0.75 0.01 0.0001 Lower

4.00 0.70 0.01 0.0001 Lower

4.00 0.65 0.01 0.0001 Lower

4.50 0.60 0.01 0.0001 Lower

4.50 0.55 0.01 0.0001 Lower

4.50 0.50 0.01 0.0001 Lower

4.50 0.45 0.01 0.0001 Lower

4.50 0.40 0.01 0.0001 Lower

4.00 0.35 0.01 0.0001 Lower

4.00 0.30 0.01 0.0001 Lower

4.00 0.25 0.01 0.0001 Lower

4.00 0.225 0.01 0.0001 Lower

4.00 0.20 0.01 0.0001 Lower

4.00 0.175 0.01 0.0001 Lower

4.00 0.15 0.01 0.0001 Lower

4.00 0.125 0.01 0.0001 Lower

4.00 0.10 0.01 0.0001 Lower

4.00 0.075 0.01 0.0001 Lower

4.00 0.05 0.01 0.0001 Lower

4.00 0.025 0.01 0.0001 Lower

4.00 0.0125 0.01 0.0001 Lower

Table B.3: Design Variable Set 2: Lower Surface -- 1-25
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Design Variable Width Exponent x Position Scaling Stepsize Surface
28

29

3O

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

4.00 0.0125 0.01 0.0001 Upper

4.00 0.025 0.01 0.0001 Upper

4.00 0.05 0.01 0.0001 Upper

4.00 0.075 0.01 0.0001 Upper

4.00 0.10 0.01 0.0001 Upper

4.00 0.125 0.01 0.0001 Upper

4.00 0.15 0.01 0.0001 Upper

4.00 0.175 0.01 0.0001 Upper

4.00 0.20 0.01 0.0001 Upper

4.00 0.225 0.01 0.0001 Upper

4.00 0.25 0.01 0.0001 Upper

4.00 0.30 0.01 0.0001 Upper

4.00 0.35 0.01 0.0001 Upper

4.50 0.40 0.01 0.0001 Upper

4.50 0.45 0.01 0.0001 Upper

4.50 0.50 0.01 0.0001 Upper

4.50 0.55 0.01 0.0001 Upper

4.50 0.60 0.01 0.0001 Upper

4.00 0.65 0.01 0.0001 Upper

4.00 0.70 0.01 0.0001 Upper

4.00 0.75 0.01 0.0001 Upper

4.00 0.80 0.01 0.0001 Upper

3.50 0.85 0.01 0.0001 Upper

3.50 0.90 0.01 0.0001 Upper

3.50 0.925 0.01 0.0001 Upper

3.50 0.95 0.01 0.0001 Upper

3.50 0.975 0.01 0.0001 Upper

Table B.4: Design Variable Set 2: Upper Surface -- 26-50
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Design Variable Width Exponent x Position Scaling Stepsize Surface
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

3.50 0.10 0.01 0.0001 Upper and Lower

3.50 0.20 0.01 0.0001 Upper and Lower

4.00 0.30 0.01 0.0001 Upper and Lower

4.00 0.35 0.01 0.0001 Upper and Lower

4.50 0.40 0.01 0.0001 Upper and Lower

4.50 0.45 0.01 0.0001 Upper and Lower

4.50 0.50 0.01 0.0001 Upper and Lower

4.50 0.55 0.01 0.0001 Upper and Lower

4.50 0.60 0.01 0.0001 Upper and Lower

4.00 0.65 0.01 0.0001 Upper and Lower

4.00 0.70 0.01 0.0001 Upper and Lower

4.00 0.75 0.01 0.0001 Upper and Lower

4.00 0.80 0.01 0.0001 Upper and Lower

3.50 0.85 0.01 0.0001 Upper and Lower

3.50 0.90 0.01 0.0001 Upper and Lower

3.50 0.925 0.01 0.0001 Upper and Lower

3.50 0.95 0.01 0.0001 Upper and Lower
3.50 0.975 0.01 0.0001 Upper and Lower

Table B.5: Design Variable Set 3: Camber -- 1-18
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Design Variable Width Exponent x Position Scaling Stepsize Surface
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

4.00 0.05 0.01 0.0001 Upper and Lower

4.00 0.10 0.01 0.0001 Upper and Lower

4.00 0.125 0.01 0.0001 Upper and Lower

4.00 0.15 0.01 0.0001 Upper and Lower

4.00 0.175 0.01 0.0001 Upper and Lower

4.00 0.20 0.01 0.0001 Upper and Lower

4.00 0.225 0.01 0.0001 Upper and Lower

4.00 0.25 0.01 0.0001 Upper and Lower

4.00 0.30 0.01 0.0001 Upper and Lower

4.00 0.35 0.01 0.0001 Upper and Lower

4.50 0.40 0.01 0.0001 Upper and Lower

4.50 0.45 0.01 0.0001 Upper and Lower

4.50 0.50 0.01 0.0001 Upper and Lower

4.50 0.55 0.01 0.0001 Upper and Lower

4.50 0.60 0.01 0.0001 Upper and Lower

4.00 0.65 0.01 0.0001 Upper and Lower

4.00 0.70 0.01 0.0001 Upper and Lower

4.00 0.75 0.01 0.0001 Upper and Lower

4.00 0.80 0.01 0.0001 Upper and Lower

3.50 0.85 0.01 0.0001 Upper and Lower

3.50 0.90 0.01 0.0001 Upper and Lower

3.50 0.925 0.01 0.0001 Upper and Lower

3.50 0.95 0.01 0.0001 Upper and Lower

3.50 0.975 0.01 0.0001 Upper and Lower

Table B.6: Design Variable Set 4: Camber -- 1-24
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Control Point x Position y Position Active
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

3O

31

32

33

34

35

36

0.00000000 0.00000000 No

0.00000000 0.00828974 Yes

0.01250000 0.02310806 Yes

0.05000000 0.03703213 Yes

0.10000000 0.04748770 Yes

0.15000000 0.05341722 Yes

0.20000000 0.05773245 Yes

0.30000000 0.06071101 Yes

0.40000000 0.05772764 Yes

0.50000000 0.05280310 Yes

0.60000000 0.04494146 Yes

0.70000000 0.03615675 Yes

0.80000000 0.02521739 Yes

0.85000000 0.01965614 Yes

0.90000000 0.01325599 Yes

0.95000000 0.00710581 Yes

0.97500000 0.00336899 Yes

1.00000000 0.00000000 No

0.00000000 0.00000000 No

0.00000000 -0.00828974 Equ_ to point 2
0.01250000 -0.02310806 Yes

0.05000000 -0.03703213 Yes

0.10000000 -0.04748770 Yes

0.15000000 -0.05341722 Yes

0.20000000-0.05773245 Yes

0.30000000 -0.06071101 Yes

0.40000000 -0.05772764 Yes

0.50000000 -0.05280310 Yes

0.60000000 -0.04494146 Yes

0.70000000 -0.03615675 Yes

0.80000000 -0.02521739 Yes

0.85000000 -0.01965614 Yes

0.90000000 -0.01325599 Yes

0.95000000 -0.00710581 Yes

0.97500000 -0.00336899 Yes

1.00000000 0.00000000 No

Table B.7: Design Variable Set 5: Upper and Lower Surfaces -- 1-36
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Appendix C

SECOND FORM OF GREEN'S THEOREM

Given an operator of the form

L( ) = (Ci()_)_ + (C2(),,)¢ + (C2()_),_ + (C:_(),,),_

operating on a function O, where (:i-,a are frozen coefficients, the integral over a domain

D,

D (_',L@) d_dTl,

where t', is another function, may be written after integration by parts as

OD is on the boundaries of the domain involving _ and 71. Similarly we can write with

the aid of integration by parts,

Thus, by subtracting one relation from the other, it is possible to develop the identity

f[9 (_',L(g,)-OL(_',))d,d,] = + f,D (_',C14,, + Y,C20,,)d,] + f,D (_"'C2(P' + _'C:'_9")d'

-- f)D (_PCl_¢ '', q-4_.2 _",_)d,/-/,, (--2_,',,+ .:, _,,,,),t_.
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